Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 23(12): 1783-1791, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36103373

RESUMO

The phytohormone abscisic acid (ABA) regulates cell growth and plant development, and contributes to defence responses to pathogens. We previously showed that the Arabidopsis malectin-like domain leucine-rich repeat receptor-like kinase (MLD-LRR-RLK) impaired oomycete susceptibility 1 (IOS1) attenuates ABA signalling during infection with the oomycete downy mildew pathogen Hyaloperonospora arabidopsidis. The exodomain of IOS1 with its MLD retains the receptor in the endoplasmic reticulum (ER), where it interacts with the ribophorin HAP6 to dampen a pathogen-induced ER stress response called the unfolded protein response (UPR). The down-regulation of both ABA and UPR signalling probably provides the pathogen with an advantage for infection. Here, we show that ABA-related phenotypes of the ios1-1 mutant, such as up-regulated expression of ABA-responsive genes and hypersensitivity to exogenous ABA application, were reverted by expression of the IOS1 exodomain in the mutant background. Furthermore, knockdown mutants for ER-resident HAP6 showed similarly reduced UPR and ABA signalling, indicating that HAP6 positively regulates both pathways. Our data suggest that the IOS1 exodomain and HAP6 contribute in the ER to the IOS1-mediated interference with ABA and UPR signalling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oomicetos , Peronospora , Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estresse do Retículo Endoplasmático , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/metabolismo , Peronospora/fisiologia , Oomicetos/metabolismo
2.
iScience ; 25(3): 103877, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243239

RESUMO

Malectins from the oligosaccharyltransferase (OST) complex in the endoplasmic reticulum (ER) of animal cells are involved in ER quality control and contribute to the Unfolded Protein Response (UPR). Malectins are not found in plant cells, but malectin-like domains (MLDs) are constituents of many membrane-bound receptors. In Arabidopsis thaliana, the MLD-containing receptor IOS1 promotes successful infection by filamentous plant pathogens. We show that the MLD of its exodomain retains IOS1 in the ER of plant cells and attenuates the infection-induced UPR. Expression of the MLD in the ios1-1 knockout background is sufficient to complement infection-related phenotypes of the mutant, such as increased UPR and reduced disease susceptibility. IOS1 interacts with the ER membrane-associated ribophorin HAP6 from the OST complex, and hap6 mutants show decreased pathogen-responsive UPR and increased disease susceptibility. Altogether, this study revealed a previously uncharacterized role of a plant receptor domain in the regulation of ER stress during infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA