Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(20): 10911-10920, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32366667

RESUMO

The genetic origins of novelty are a central interest of evolutionary biology. Most new proteins evolve from preexisting proteins but the evolutionary path from ancestral gene to novel protein is challenging to trace, and therefore the requirements for and order of coding sequence changes, expression changes, or gene duplication are not clear. Snake venoms are important novel traits that are comprised of toxins derived from several distinct protein families, but the genomic and evolutionary origins of most venom components are not understood. Here, we have traced the origin and diversification of one prominent family, the snake venom metalloproteinases (SVMPs) that play key roles in subduing prey in many vipers. Genomic analyses of several rattlesnake (Crotalus) species revealed the SVMP family massively expanded from a single, deeply conserved adam28 disintegrin and metalloproteinase gene, to as many as 31 tandem genes in the Western Diamondback rattlesnake (Crotalus atrox) through a number of single gene and multigene duplication events. Furthermore, we identified a series of stepwise intragenic deletions that occurred at different times in the course of gene family expansion and gave rise to the three major classes of secreted SVMP toxins by sequential removal of a membrane-tethering domain, the cysteine-rich domain, and a disintegrin domain, respectively. Finally, we show that gene deletion has further shaped the SVMP complex within rattlesnakes, creating both fusion genes and substantially reduced gene complexes. These results indicate that gene duplication and intragenic deletion played essential roles in the origin and diversification of these novel biochemical weapons.


Assuntos
Evolução Biológica , Crotalus/metabolismo , Venenos de Serpentes/genética , Venenos de Serpentes/metabolismo , Animais , Venenos de Crotalídeos/genética , Venenos de Crotalídeos/metabolismo , Evolução Molecular , Feminino , Duplicação Gênica , Fusão Gênica , Metaloproteases/genética , Metaloproteases/metabolismo , Venenos de Serpentes/classificação , Toxinas Biológicas/metabolismo
2.
Curr Biol ; 28(7): 1016-1026.e4, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29576471

RESUMO

Natural selection is generally expected to favor one form of a given trait within a population. The presence of multiple functional variants of traits involved in activities such as feeding, reproduction, or the defense against predators is relatively uncommon within animal species. The genetic architecture and evolutionary mechanisms underlying the origin and maintenance of such polymorphisms are of special interest. Among rattlesnakes, several instances of the production of biochemically distinct neurotoxic or hemorrhagic venom types within the same species are known. Here, we investigated the genetic basis of this phenomenon in three species and found that neurotoxic and hemorrhagic individuals of the same species possess markedly different haplotypes at two toxin gene complexes. For example, neurotoxic and hemorrhagic Crotalus scutulatus individuals differ by 5 genes at the phospholipase A2 (PLA2) toxin gene complex and by 11 genes at the metalloproteinase (MP) gene complex. A similar set of extremely divergent haplotypes also underlies alternate venom types within C. helleri and C. horridus. We further show that the MP and PLA2 haplotypes of neurotoxic C. helleri appear to have been acquired through hybridization with C. scutulatus-a rare example of the horizontal transfer of a potentially highly adaptive suite of genes. These large structural variants appear analogous to immunity gene complexes in host-pathogen arms races and may reflect the impact of balancing selection at the PLA2 and MP complexes for predation on different prey.


Assuntos
Venenos de Crotalídeos/genética , Crotalus/genética , Haplótipos , Metaloproteases/genética , Fosfolipases A2/genética , Polimorfismo Genético , Animais , Venenos de Crotalídeos/classificação , Crotalus/classificação , Evolução Molecular , Fenótipo , Especificidade da Espécie
3.
Curr Biol ; 26(18): 2434-2445, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27641771

RESUMO

The genetic origin of novel traits is a central but challenging puzzle in evolutionary biology. Among snakes, phospholipase A2 (PLA2)-related toxins have evolved in different lineages to function as potent neurotoxins, myotoxins, or hemotoxins. Here, we traced the genomic origin and evolution of PLA2 toxins by examining PLA2 gene number, organization, and expression in both neurotoxic and non-neurotoxic rattlesnakes. We found that even though most North American rattlesnakes do not produce neurotoxins, the genes of a specialized heterodimeric neurotoxin predate the origin of rattlesnakes and were present in their last common ancestor (∼22 mya). The neurotoxin genes were then deleted independently in the lineages leading to the Western Diamondback (Crotalus atrox) and Eastern Diamondback (C. adamanteus) rattlesnakes (∼6 mya), while a PLA2 myotoxin gene retained in C. atrox was deleted from the neurotoxic Mojave rattlesnake (C. scutulatus; ∼4 mya). The rapid evolution of PLA2 gene number appears to be due to transposon invasion that provided a template for non-allelic homologous recombination.


Assuntos
Venenos de Crotalídeos/genética , Crotalus/genética , Fosfolipases A2/genética , Proteínas de Répteis/genética , Sequência de Aminoácidos , Animais , Venenos de Crotalídeos/química , Venenos de Crotalídeos/metabolismo , Crotalus/metabolismo , Evolução Molecular , Fosfolipases A2/química , Fosfolipases A2/metabolismo , Filogenia , Proteínas de Répteis/química , Proteínas de Répteis/metabolismo , Especificidade da Espécie
4.
Proc Natl Acad Sci U S A ; 112(24): 7524-9, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26034272

RESUMO

Changes in gene expression during animal development are largely responsible for the evolution of morphological diversity. However, the genetic and molecular mechanisms responsible for the origins of new gene-expression domains have been difficult to elucidate. Here, we sought to identify molecular events underlying the origins of three novel features of wingless (wg) gene expression that are associated with distinct pigmentation patterns in Drosophila guttifera. We compared the activity of cis-regulatory sequences (enhancers) across the wg locus in D. guttifera and Drosophila melanogaster and found strong functional conservation among the enhancers that control similar patterns of wg expression in larval imaginal discs that are essential for appendage development. For pupal tissues, however, we found three novel wg enhancer activities in D. guttifera associated with novel domains of wg expression, including two enhancers located surprisingly far away in an intron of the distant Wnt10 gene. Detailed analysis of one enhancer (the vein-tip enhancer) revealed that it overlapped with a region controlling wg expression in wing crossveins (crossvein enhancer) in D. guttifera and other species. Our results indicate that one novel domain of wg expression in D. guttifera wings evolved by co-opting pre-existing regulatory sequences governing gene activity in the developing wing. We suggest that the modification of existing enhancers is a common path to the evolution of new gene-expression domains and enhancers.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila/genética , Proteína Wnt1/genética , Animais , Animais Geneticamente Modificados , Drosophila/crescimento & desenvolvimento , Drosophila melanogaster/crescimento & desenvolvimento , Elementos Facilitadores Genéticos , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Teste de Complementação Genética , Dados de Sequência Molecular , Especificidade da Espécie , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Proteínas Wnt/genética
5.
Cell Rep ; 2(4): 1014-24, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23063361

RESUMO

Over 6,000 fragments from the genome of Drosophila melanogaster were analyzed for their ability to drive expression of GAL4 reporter genes in the third-instar larval imaginal discs. About 1,200 reporter genes drove expression in the eye, antenna, leg, wing, haltere, or genital imaginal discs. The patterns ranged from large regions to individual cells. About 75% of the active fragments drove expression in multiple discs; 20% were expressed in ventral, but not dorsal, discs (legs, genital, and antenna), whereas ∼23% were expressed in dorsal but not ventral discs (wing, haltere, and eye). Several patterns, for example, within the leg chordotonal organ, appeared a surprisingly large number of times. Unbiased searches for DNA sequence motifs suggest candidate transcription factors that may regulate enhancers with shared activities. Together, these expression patterns provide a valuable resource to the community and offer a broad overview of how transcriptional regulatory information is distributed in the Drosophila genome.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Genoma , Discos Imaginais/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Antenas de Artrópodes/metabolismo , Blastodisco/metabolismo , Bases de Dados Factuais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Olho/metabolismo , Genes Reporter , Elementos Reguladores de Transcrição , Fatores de Transcrição/genética , Asas de Animais/metabolismo
6.
Stand Genomic Sci ; 7(1): 150-2, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23451292

RESUMO

This report summarizes the proceedings of the 1st Snake Genomics and Integrative Biology Meeting held in Vail, CO USA, 5-8 October 2011. The meeting had over twenty registered participants, and was conducted as a single session of presentations. Goals of the meeting included coordination of genomic data collection and fostering collaborative interactions among researchers using snakes as model systems.

7.
Dev Cell ; 20(4): 455-68, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21497759

RESUMO

The proximodistal (PD) axis of the Drosophila leg is thought to be established by the combined gradients of two secreted morphogens, Wingless (Wg) and Decapentaplegic (Dpp). According to this model, high [Wg+Dpp] activates Distalless (Dll) and represses dachshund (dac) in the distal cells of the leg disc, while intermediate [Wg+Dpp] activates dac in medial tissue. To test this model we identified and characterized a dac cis-regulatory element (dac RE) that recapitulates dac's medial expression domain during leg development. Counter to the gradient model, we find that Wg and Dpp do not act in a graded manner to activate RE. Instead, dac RE is activated directly by Dll and repressed distally by a combination of factors, including the homeodomain protein Bar. Thus, medial leg fates are established via a regulatory cascade in which Wg+Dpp activate Dll and then Dll directly activates dac, with Wg+Dpp as less critical, permissive inputs.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Extremidades/crescimento & desenvolvimento , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Drosophila melanogaster/anatomia & histologia
8.
Evol Dev ; 6(6): 402-10, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15509222

RESUMO

Much of our understanding of arthropod limb development comes from studies on the leg imaginal disc of Drosophila melanogaster. The fly limb is a relatively simple unbranched (uniramous) structure extending out from the body wall. The molecular basis for this outgrowth involves the overlap of two signaling molecules, Decapentaplegic (Dpp) and Wingless (Wg), to create a single domain of distal outgrowth, clearly depicted by the expression of the Distal-less gene (Dll). The expression of wg and dpp during the development of other arthropod thoracic limbs indicates that these pathways might be conserved across arthropods for uniramous limb development. The appendages of crustaceans and the gnathal appendages of insects, however, exhibit a diverse array of morphologies, ranging from those with no distal elements, such as the mandible, to appendages with multiple distal elements. Examples of the latter group include branched appendages or those that possess multiple lobes; such complex morphologies are seen for many crustacean limbs as well as the maxillary and labial appendages of many insects. It is unclear how, if at all, the known patterning genes for making a uniramous limb might be deployed to generate these diverse appendage forms. Experiments in Drosophila have shown that by forcing ectopic overlaps of Wg and Dpp signaling it is possible to generate artificially branched legs. To test whether naturally branched appendages form in a similar manner, we detailed the expression patterns of wg, dpp, and Dll in the development of the branched gnathal appendages of the grasshopper, Schistocerca americana, and the flour beetle, Tribolium castaneum. We find that the branches of the gnathal appendages are not specified through the redeployment of the Wg-Dpp system for distal outgrowth, but our comparative studies do suggest a role for Dpp in forming furrows between tissues.


Assuntos
Padronização Corporal/fisiologia , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Gafanhotos/embriologia , Proteínas de Homeodomínio/biossíntese , Proteínas de Insetos/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição/biossíntese , Tribolium/embriologia , Animais , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Proteínas de Insetos/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA