RESUMO
With excellent energy resolution and ultralow-level radiogenic backgrounds, the high-purity germanium detectors in the Majorana Demonstrator enable searches for several classes of exotic dark matter (DM) models. In this work, we report new experimental limits on keV-scale sterile neutrino DM via the transition magnetic moment from conversion to active neutrinos ν_{s}âν_{a}. We report new limits on fermionic dark matter absorption (χ+Aâν+A) and sub-GeV DM-nucleus 3â2 scattering (χ+χ+AâÏ+A), and new exclusion limits for bosonic dark matter (axionlike particles and dark photons). These searches utilize the (1-100)-keV low-energy region of a 37.5-kg y exposure collected by the Demonstrator between May 2016 and November 2019 using a set of ^{76}Ge-enriched detectors whose surface exposure time was carefully controlled, resulting in extremely low levels of cosmogenic activation.
RESUMO
^{180m}Ta is a rare nuclear isomer whose decay has never been observed. Its remarkably long lifetime surpasses the half-lives of all other known ß and electron capture decays due to the large K-spin differences and small energy differences between the isomeric and lower-energy states. Detecting its decay presents a significant experimental challenge but could shed light on neutrino-induced nucleosynthesis mechanisms, the nature of dark matter, and K-spin violation. For this study, we repurposed the Majorana Demonstrator, an experimental search for the neutrinoless double-beta decay of ^{76}Ge using an array of high-purity germanium detectors, to search for the decay of ^{180m}Ta. More than 17 kg, the largest amount of tantalum metal ever used for such a search, was installed within the ultralow-background detector array. In this Letter, we present results from the first year of Ta data taking and provide an updated limit for the ^{180m}Ta half-life on the different decay channels. With new limits up to 1.5×10^{19} yr, we improved existing limits by 1-2 orders of magnitude which are the most sensitive searches for a single ß and electron capture decay ever achieved. Over all channels, the decay can be excluded for T_{1/2}<0.29×10^{18} yr.
RESUMO
This corrects the article DOI: 10.1103/PhysRevLett.129.080401.
RESUMO
Dark matter elastic scattering off nuclei can result in the excitation and ionization of the recoiling atom through the so-called Migdal effect. The energy deposition from the ionization electron adds to the energy deposited by the recoiling nuclear system and allows for the detection of interactions of sub-GeV/c^{2} mass dark matter. We present new constraints for sub-GeV/c^{2} dark matter using the dual-phase liquid argon time projection chamber of the DarkSide-50 experiment with an exposure of (12 306±184) kg d. The analysis is based on the ionization signal alone and significantly enhances the sensitivity of DarkSide-50, enabling sensitivity to dark matter with masses down to 40 MeV/c^{2}. Furthermore, it sets the most stringent upper limit on the spin independent dark matter nucleon cross section for masses below 3.6 GeV/c^{2}.
RESUMO
We present a search for dark matter particles with sub-GeV/c^{2} masses whose interactions have final state electrons using the DarkSide-50 experiment's (12 306±184) kg d low-radioactivity liquid argon exposure. By analyzing the ionization signals, we exclude new parameter space for the dark matter-electron cross section σ[over ¯]_{e}, the axioelectric coupling constant g_{Ae}, and the dark photon kinetic mixing parameter κ. We also set the first dark matter direct-detection constraints on the mixing angle |U_{e4}|^{2} for keV/c^{2} sterile neutrinos.
RESUMO
The Majorana Demonstrator searched for neutrinoless double-ß decay (0νßß) of ^{76}Ge using modular arrays of high-purity Ge detectors operated in vacuum cryostats in a low-background shield. The arrays operated with up to 40.4 kg of detectors (27.2 kg enriched to â¼88% in ^{76}Ge). From these measurements, the Demonstrator has accumulated 64.5 kg yr of enriched active exposure. With a world-leading energy resolution of 2.52 keV FWHM at the 2039 keV Q_{ßß} (0.12%), we set a half-life limit of 0νßß in ^{76}Ge at T_{1/2}>8.3×10^{25} yr (90% C.L.). This provides a range of upper limits on m_{ßß} of (113-269) meV (90% C.L.), depending on the choice of nuclear matrix elements.
RESUMO
The Majorana Demonstrator neutrinoless double-beta decay experiment comprises a 44 kg (30 kg enriched in ^{76}Ge) array of p-type, point-contact germanium detectors. With its unprecedented energy resolution and ultralow backgrounds, Majorana also searches for rare event signatures from beyond standard model physics in the low energy region below 100 keV. In this Letter, we test the continuous spontaneous localization (CSL) model, one of the mathematically well-motivated wave function collapse models aimed at solving the long-standing unresolved quantum mechanical measurement problem. While the CSL predicts the existence of a detectable radiation signature in the x-ray domain, we find no evidence of such radiation in the 19-100 keV range in a 37.5 kg-y enriched germanium exposure collected between December 31, 2015, and November 27, 2019, with the Demonstrator. We explored both the non-mass-proportional (n-m-p) and the mass-proportional (m-p) versions of the CSL with two different assumptions: that only the quasifree electrons can emit the x-ray radiation and that the nucleus can coherently emit an amplified radiation. In all cases, we set the most stringent upper limit to date for the white CSL model on the collapse rate, λ, providing a factor of 40-100 improvement in sensitivity over comparable searches. Our limit is the most stringent for large parts of the allowed parameter space. If the result is interpreted in terms of the Diòsi-Penrose gravitational wave function collapse model, the lower bound with a 95% confidence level is almost an order of magnitude improvement over the previous best limit.
RESUMO
Axions were originally proposed to explain the strong-CP problem in QCD. Through axion-photon coupling, the Sun could be a major source of axions, which could be measured in solid state detection experiments with enhancements due to coherent Primakoff-Bragg scattering. The Majorana Demonstrator experiment has searched for solar axions with a set of ^{76}Ge-enriched high purity germanium detectors using a 33 kg-yr exposure collected between January, 2017 and November, 2019. A temporal-energy analysis gives a new limit on the axion-photon coupling as g_{aγ}<1.45×10^{-9} GeV^{-1} (95% confidence level) for axions with mass up to 100 eV/c^{2}. This improves laboratory-based limits between about 1 eV/c^{2} and 100 eV/c^{2}.
RESUMO
P-type point contact (PPC) HPGe detectors are a leading technology for rare event searches due to their excellent energy resolution, low thresholds, and multi-site event rejection capabilities. We have characterized a PPC detector's response to α particles incident on the sensitive passivated and p + surfaces, a previously poorly-understood source of background. The detector studied is identical to those in the Majorana Demonstrator experiment, a search for neutrinoless double-beta decay ( 0 ν ß ß ) in 76 Ge. α decays on most of the passivated surface exhibit significant energy loss due to charge trapping, with waveforms exhibiting a delayed charge recovery (DCR) signature caused by the slow collection of a fraction of the trapped charge. The DCR is found to be complementary to existing methods of α identification, reliably identifying α background events on the passivated surface of the detector. We demonstrate effective rejection of all surface α events (to within statistical uncertainty) with a loss of only 0.2% of bulk events by combining the DCR discriminator with previously-used methods. The DCR discriminator has been used to reduce the background rate in the 0 ν ß ß region of interest window by an order of magnitude in the Majorana Demonstrator and will be used in the upcoming LEGEND-200 experiment.
RESUMO
In pathological-forensic literature blast injuries are usually studied in relation to suicides, homicides during terroristic attacks and accidental events on the workplace, while the finding of these kinds of fatalities during misdoing is a recent occurrence. The Authors describe the peculiar case of the accidental death of the member of a criminal mob specialized in thefts to ATMs using acetylene tanks. The victim, having poured out the acetylene with the intent of triggering an explosion, was involved in the blast of the tank, deceasing immediately. This unusual manner of death highlights the danger of room saturation with acetylene, a criminal technique becoming more and more popular in the last years.
Assuntos
Acetileno/toxicidade , Traumatismos por Explosões/patologia , Explosões , Acidentes , Adulto , Traumatismos por Explosões/etiologia , Humanos , Masculino , RouboRESUMO
The Majorana Demonstrator is an ultralow-background experiment searching for neutrinoless double-beta decay in ^{76}Ge. The heavily shielded array of germanium detectors, placed nearly a mile underground at the Sanford Underground Research Facility in Lead, South Dakota, also allows searches for new exotic physics. Free, relativistic, lightly ionizing particles with an electrical charge less than e are forbidden by the standard model but predicted by some of its extensions. If such particles exist, they might be detected in the Majorana Demonstrator by searching for multiple-detector events with individual-detector energy depositions down to 1 keV. This search is background-free, and no candidate events have been found in 285 days of data taking. New direct-detection limits are set for the flux of lightly ionizing particles for charges as low as e/1000.
RESUMO
The Majorana Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-ß decay in ^{76}Ge. The Majorana Demonstrator comprises 44.1 kg of Ge detectors (29.7 kg enriched in ^{76}Ge) split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. Here we present results from data taken during construction, commissioning, and the start of full operations. We achieve unprecedented energy resolution of 2.5 keV FWHM at Q_{ßß} and a very low background with no observed candidate events in 9.95 kg yr of enriched Ge exposure, resulting in a lower limit on the half-life of 1.9×10^{25} yr (90% C.L.). This result constrains the effective Majorana neutrino mass to below 240-520 meV, depending on the matrix elements used. In our experimental configuration with the lowest background, the background is 4.0_{-2.5}^{+3.1} counts/(FWHM t yr).
RESUMO
Acoustic noise levels were measured in the Gulf of Catania (Ionian Sea) from July 2012 to May 2013 by a low frequency (<1000Hz) hydrophone, installed on board the NEMO-SN1 multidisciplinary observatory. NEMO-SN1 is a cabled node of EMSO-ERIC, which was deployed at a water depth of 2100m, 25km off Catania. The study area is characterized by the proximity of mid-size harbors and shipping lanes. Measured noise levels were correlated with the passage of ships tracked with a dedicated AIS antenna. Noise power was measured in the frequency range between 10Hz and 1000Hz. Experimental data were compared with the results of a fast numerical model based on AIS data to evaluate the contribution of shipping noise in six consecutive 1/3 octave frequency bands, including the 1/3 octave frequency bands centered at 63Hz and 125Hz, indicated by the Marine Strategy Framework Directive (2008/56/EC).
Assuntos
Monitoramento Ambiental , Ruído , Navios , Acústica , ÁguaRESUMO
We present new limits on exotic keV-scale physics based on 478 kg d of Majorana Demonstrator commissioning data. Constraints at the 90% confidence level are derived on bosonic dark matter (DM) and solar axion couplings, Pauli exclusion principle violating (PEPV) decay, and electron decay using monoenergetic peak signal limits above our background. Our most stringent DM constraints are set for 11.8 keV mass particles, limiting g_{Ae}<4.5×10^{-13} for pseudoscalars and (α^{'}/α)<9.7×10^{-28} for vectors. We also report a 14.4 keV solar axion coupling limit of g_{AN}^{eff}×g_{Ae}<3.8×10^{-17}, a 1/2ß^{2}<8.5×10^{-48} limit on the strength of PEPV electron transitions, and a lower limit on the electron lifetime of τ_{e}>1.2×10^{24} yr for e^{-}â invisible.
RESUMO
We present measurement results of airborne fission products in Chapel Hill, NC, USA, from 62 d following the March 11, 2011, accident at the Fukushima Dai-ichi nuclear power plant. Airborne particle samples were collected daily in air filters and radio-assayed with two high-purity germanium (HPGe) detectors. The fission products (131)I and (137)Cs were measured with maximum activity concentrations of 4.2 ± 0.6 mBq/m(3) and 0.42 ± 0.07 mBq/m(3) respectively. Additional activity from (131,132)I, (134,136,137)Cs and (132)Te were measured in the same air filters using a low-background HPGe detector at the Kimballton Underground Research Facility (KURF).
Assuntos
Poluentes Radioativos do Ar/análise , Centrais Nucleares , Cinza Radioativa/análise , Liberação Nociva de Radioativos , Radioisótopos/análise , Humanos , Japão , North Carolina , Monitoramento de Radiação , Fatores de TempoRESUMO
BACKGROUND: Rehabilitation programs for patients with patellofemoral dysfunction aim to recruit the vastus medialis obliquus muscle (VMO) in an attempt to reduce pain and to improve patellar tracking. OBJECTIVES: The aim of the present study was to use surface EMG to assess the effectiveness of two isometric submaximal contractions (10% and 60% of maximal voluntary contraction, MVC) in promoting preferential activation of VMO over vastus medialis longus (VML) and vastus lateralis (VL) in open and closed kinetic chain isometric exercises with the knee joint fixed at 30, 60 and 90 degrees of flexion. METHODS AND MEASURES: Surface electromyography (EMG) signals were recorded with linear adhesive arrays of four electrodes from fourteen healthy young men (age 23.5±3.2, mean±SD) during isometric knee extension contractions at 10% and 60% of the maximum voluntary contraction (MVC) for 1 min and 20 s respectively at 30, 60 and 90 degrees of knee flexion. Initial values and rate of change (slope) of mean frequency (MNF), average rectified value (ARV) and conduction velocity (CV) of the EMG signal were calculated. RESULTS: Comparisons between the force levels produced at 10% and 60% MVC revealed that the initial values of ARV and CV for the VL, VML and VMO muscle were greater at 60% MVC compared to 10% MVC (3-way ANOVA; F=536; p<0.001, F=49: p<0.01 for ARV and CV respectively). Comparisons between the different muscles demonstrated lower initial values of CV for VMO compared to VL and VLM at 10% and 60% of MVC (F=15; p<0.05). In addition, initial estimates of ARV were higher for VMO compared to VML at both force levels (F=66; p<0.05). Comparisons between open and closed kinetic chain exercises revealed higher initial estimates of ARV for open kinetic chain knee extension at both force levels (F=62; p<0.01). In addition, the absolute value of MNF slope appeared to increase at higher angles for closed kinetic chain at 60% MVC while it was minimum at 60° degrees for open kinetic chain. No significant differences were observed in the rate of change of CV and MNF among the three muscles. CONCLUSIONS: Based on the results of this study, both open and closed kinetic chain exercise similarly activate the three portions of the quadriceps muscle, suggesting that selective training of the vastii muscle is not achievable in these conditions.