Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499098

RESUMO

Opposing dose-dependent effects of curcumin (Cur) have been documented in Retinal Pigment Epithelium (RPE); therefore, to shed the light on the mechanisms of action is crucial for ophthalmic applications. On this basis we explored new insights about the dose-dependent mechanisms triggered by Cur in human retinal pigment epithelial cells (ARPE-19). Three concentrations (0.01 mM; 0.05 mM; 0.1 mM) of Cur were tested, followed by morphological, molecular, and functional analysis of the cells. Cur 0.01 mM promotes a significant increase in cell proliferation, not affecting cell cycle progression and apoptosis; by contrast, Cur 0.05 mM and 0.1 mM block cellular proliferation and trigger S-phase cell cycle arrest without inducing apoptosis. The observation of neuronal-like morphological changes in Cur 0.05 mM and 0.1 mM were not associated with neuronal differentiation, as observed by the quantification of Neurofilament-200 and by the analysis of voltage-dependent currents by patch clamp. Evaluation of autophagic markers LC3BII and p62 revealed significant modulations, suggesting an important activation of autophagy in ARPE-19 cells treated with Cur 0.05 mM and Cur 0.1 mM; conversely, Cur 0.01 mM did not affect autophagy. Altogether, our findings show new dose-dependent mechanisms of action of Cur that suggest a wide therapeutic application in ocular diseases with different pathogenesis (i.e., proliferative vitreoretinopathy or Age-Related Macular Degeneration).


Assuntos
Curcumina , Humanos , Curcumina/farmacologia , Curcumina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Autofagia , Apoptose , Proliferação de Células
2.
Artigo em Inglês | MEDLINE | ID: mdl-33233323

RESUMO

When applying drop jump exercises, knowing the magnitude of the stimulus is fundamental to stabilize the leg joints and to generate movements with the highest power. The effects of different drop heights on leg muscles coactivation, leg stiffness and power propulsion were investigated in fifteen sport science students. Drop jumps from heights of 20, 30, 40, 50, and 60 cm in a random order were performed on a force platform. During each drop jump, the ground reaction force, knee angle displacement, and synchronized surface-electromyography root-mean-square (sEMGRMS) activity (vastus lateralis, VL; vastus medialis, VM; rectus femoris, RF; biceps femoris, BF; tibialis anterior, TA and lateral gastrocnemius, LG) were recorded. The coactivation in the pre-contact phase, between VL and BF, VM and BF as well as RF and BF, was dependent on the drop height (p < 0.01; effect size (ES) ranged from 0.45 to 0.90). Leg stiffness was dependent on the drop height (p < 0.001; ES = 0.27-0.28) and was modulated by the coactivation of VM-BF (p = 0.034) and RF-BF (p = 0.046) during the braking phase. Power propulsion was also dependent on the drop height (p < 0.001; ES = 0.34); however, it was primarily modulated by the coactivation of LG-TA during the braking phase (p = 0.002). The coactivation of thigh muscles explains leg stiffness adjustments at different drop heights. On the contrary, the coactivation of shank muscles is mostly responsible for the power propulsion.


Assuntos
Joelho , Músculo Esquelético/fisiologia , Exercício Pliométrico , Atletismo/fisiologia , Eletromiografia , Feminino , Humanos , Masculino , Contração Muscular , Adulto Jovem
3.
Neuroscience ; 439: 153-162, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31047977

RESUMO

Erythropoietin (EPO) is a hematopoietic growth factor that has an important role in the erythropoiesis. EPO and its receptor (EPO-R) are expressed all over in the mammalian brain. Furthermore, it has been reported that EPO may exert neuroprotective effect in animal models of brain disorders as ischemia and epilepsy. Here, we investigate whether EPO could modulate the GABA-evoked currents (IGABA) in both human epileptic and non-epileptic control brain tissues. Therefore, we transplanted in Xenopus oocytes cell membranes obtained from autoptic and surgical brain tissues (cortex) of seven temporal lope epilepsy (TLE) patients and of five control patients. Two microelectrodes voltage-clamp technique has been used to record IGABA. Moreover, qRT-PCR assay was performed in the same human tissues to quantify the relative gene expression levels of EPO/EPO-R. To further confirm experiments in oocytes, we performed additional experiments using patch-clamp recording in slices obtained from rat cerebellum. We show that exposure to EPO significantly increased the amplitude of the IGABA in all the patients analyzed. No differences in the expression of EPO and EPO-R in both TLE and control patients have been found. Notably, the increase of IGABA has been recorded also in rat cerebellar slices. Our findings show a new modulatory action of EPO on GABAA receptors (GABAA-Rs). This effect could be relevant to balance the GABAergic dysfunction in human TLE. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.


Assuntos
Epilepsia , Eritropoetina , Animais , Córtex Cerebral/metabolismo , Humanos , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico
4.
Neurol Res Int ; 2014: 946073, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25548669

RESUMO

Denervated muscles undergo fibrillations due to spontaneous activation of voltage-gated sodium (Na(+)) channels generating action potentials. Fibrillations also occur in patients with amyotrophic lateral sclerosis (ALS). Riluzole, the only approved drug for ALS treatment, blocks voltage-gated Na(+) channels, but its effects on muscle Na(+) channels and fibrillations are yet poorly characterized. Using patch-clamp technique, we studied riluzole effect on Na(+) channels in cultured myotubes from ALS patients. Needle electromyography was used to study fibrillation potentials (Fibs) in ALS patients during riluzole treatment and after one week of suspension. Patients were clinically characterized in all recording sessions. In myotubes, riluzole (1 µM, a therapeutic concentration) reduced Na(+) current by 20%. The rate of rise and amplitude of spikes evoked by depolarizing stimuli were also reduced. Fibs were detected in all patients tested during riluzole treatment and riluzole washout had no univocal effect. Our study indicates that, in human myotubes, riluzole partially blocks Na(+) currents and affects action potentials but does not prevent firing. In line with this in vitro finding, muscle Fibs in ALS patients appear to be largely unaffected by riluzole.

5.
PLoS One ; 9(11): e111521, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25368995

RESUMO

OBJECTIVE: To investigate the acute residual hormonal and neuromuscular responses exhibited following a single session of mechanical vibration applied to the upper extremities among different acceleration loads. METHODS: Thirty male students were randomly assigned to a high vibration group (HVG), a low vibration group (LVG), or a control group (CG). A randomized double-blind, controlled-parallel study design was employed. The measurements and interventions were performed at the Laboratory of Biomechanics of the University of L'Aquila. The HVG and LVG participants were exposed to a series of 20 trials ×10 s of synchronous whole-body vibration (WBV) with a 10-s pause between each trial and a 4-min pause after the first 10 trials. The CG participants assumed an isometric push-up position without WBV. The outcome measures were growth hormone (GH), testosterone, maximal voluntary isometric contraction during bench-press, maximal voluntary isometric contraction during handgrip, and electromyography root-mean-square (EMGrms) muscle activity (pectoralis major [PM], triceps brachii [TB], anterior deltoid [DE], and flexor carpi radialis [FCR]). RESULTS: The GH increased significantly over time only in the HVG (P = 0.003). Additionally, the testosterone levels changed significantly over time in the LVG (P = 0.011) and the HVG (P = 0.001). MVC during bench press decreased significantly in the LVG (P = 0.001) and the HVG (P = 0.002). In the HVG, the EMGrms decreased significantly in the TB (P = 0.006) muscle. In the LVG, the EMGrms decreased significantly in the DE (P = 0.009) and FCR (P = 0.006) muscles. CONCLUSION: Synchronous WBV acutely increased GH and testosterone serum concentrations and decreased the MVC and their respective maximal EMGrms activities, which indicated a possible central fatigue effect. Interestingly, only the GH response was dependent on the acceleration with respect to the subjects' responsiveness.


Assuntos
Hormônio do Crescimento/sangue , Músculo Esquelético/fisiologia , Testosterona/sangue , Vibração , Adulto , Braço/fisiologia , Fenômenos Biomecânicos , Método Duplo-Cego , Eletromiografia , Força da Mão/fisiologia , Humanos , Masculino
6.
Neuron ; 67(4): 656-66, 2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20797541

RESUMO

The central nucleus of the amygdala (CeA) serves as a major output of this structure and plays a critical role in the expression of conditioned fear. By combining cell- and tissue-specific pharmacogenetic inhibition with functional magnetic resonance imaging (fMRI), we identified circuits downstream of CeA that control fear expression in mice. Selective inhibition of a subset of neurons in CeA led to decreased conditioned freezing behavior and increased cortical arousal as visualized by fMRI. Correlation analysis of fMRI signals identified functional connectivity between CeA, cholinergic forebrain nuclei, and activated cortical structures, and cortical arousal was blocked by cholinergic antagonists. Importantly, inhibition of these neurons switched behavioral responses to the fear stimulus from passive to active responses. Our findings identify a neural circuit in CeA that biases fear responses toward either passive or active coping strategies.


Assuntos
Tonsila do Cerebelo/fisiologia , Encéfalo/fisiologia , Medo/fisiologia , Neurônios/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Adaptação Psicológica/efeitos dos fármacos , Adaptação Psicológica/fisiologia , Tonsila do Cerebelo/irrigação sanguínea , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Volume Sanguíneo/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Medo/efeitos dos fármacos , Reação de Congelamento Cataléptica/efeitos dos fármacos , Reação de Congelamento Cataléptica/fisiologia , Técnicas In Vitro , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Modelos Neurológicos , Vias Neurais/irrigação sanguínea , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neurônios/efeitos dos fármacos , Ocitocina/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina , Antagonistas do Receptor 5-HT1 de Serotonina
7.
Biochem Biophys Res Commun ; 365(2): 349-54, 2008 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-17999915

RESUMO

Recent data challenged the assumption that light has little effect on retina development. Here, we report evidence that dark rearing permanently changes the synaptic input to GCs. A reduced spontaneous postsynaptic currents (SPSCs) frequency was found in retinal GCs from rats born and raised in the dark for three months. Glutamate antagonists (CNQX and AP-5) reversibly reduced SPSCs frequency in control and dark-reared (DR) retinae. The GABA antagonist picrotoxin (PTX) reduced SPSCs frequency in control retinas, but increased SPSCs frequency in DR, mainly by presynaptic action on excitatory currents. In DR animals exposed to normal cyclic light for 3 months, SPSCs frequency remained lower then in control rats and increased following PTX, suggesting that long-term dark rearing induces permanent modifications of the retinal circuitry. Our results strongly support the idea that light stimulation plays a role in establishing normal synaptic input to GCs.


Assuntos
Adaptação à Escuridão/fisiologia , Ambiente Controlado , Potenciais Evocados Visuais/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Plasticidade Neuronal/fisiologia , Células Ganglionares da Retina/fisiologia , Privação Sensorial/fisiologia , Animais , Escuridão , Ratos , Ratos Long-Evans
8.
J Neuroimmunol ; 127(1-2): 30-6, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12044972

RESUMO

In the present work, we studied the effects of the stimulation of the chemokine CXC receptor 4 (CXCR4) by the stromal-derived cell growth factor-1alpha (SDF-1alpha) on the evoked excitatory postsynaptic current. This was generated in Purkinje neurons (PN) from mouse cerebellar slices by the stimulation of parallel fibers. It was found that the amplitude of EPSC was reversibly reduced by SDF-1alpha application. This effect was dose-dependent (IC(50)=0.34 nM) and was abolished by the anti-CXCR4 monoclonal antibody (mAb) 12G5. This SDF-1alpha-induced synaptic depression was caused by a decrease of evoked glutamate release, rather than a decrease in the postsynaptic glutamate receptor (GluR) sensitivity, as the mean amplitude of the spontaneous EPSCs was not influenced by chemokine application. Moreover, NMDA receptors (NMDARs) are involved in EPSC depression being inhibited by the NMDAR blocker 2-amino-5-phosphonopentanoic acid (AP-5). The mechanisms by which SDF-1alpha modulates neurotransmission in the cerebellar cortex are discussed.


Assuntos
Células de Purkinje/fisiologia , Receptores CXCR4/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/imunologia , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Quimiocina CXCL12 , Quimiocinas CXC/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Técnicas de Patch-Clamp , Receptores de AMPA/metabolismo , Receptores CXCR4/imunologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA