Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 18(29): e2107976, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35732601

RESUMO

The spatial distribution and concentration of lanthanide activator and sensitizer dopant ions are of key importance for the luminescence color and efficiency of upconverting nanoparticles (UCNPs). Quantifying dopant ion distributions and intermixing, and correlating them with synthesis methods require suitable analytical techniques. Here, X-ray photoelectron spectroscopy depth-profiling with tender X-rays (2000-6000 eV), providing probe depths ideally matched to UCNP sizes, is used to measure the depth-dependent concentration ratios of Er3+ to Yb3+ , [Er3+ ]/[Yb3+ ], in three types of UCNPs prepared using different reagents and synthesis methods. This is combined with data simulations and inductively coupled plasma-optical emission spectroscopy (ICP-OES) measurements of the lanthanide ion concentrations to construct models of the UCNPs' dopant ion distributions. The UCNP sizes and architectures are chosen to demonstrate the potential of this approach. Core-only UCNPs synthesized with XCl3 ·6H2 O precursors (ß-phase) exhibit a homogeneous distribution of lanthanide ions, but a slightly surface-enhanced [Er3+ ]/[Yb3+ ] is observed for UCNPs prepared with trifluroacetate precursors (α-phase). Examination of Yb-core@Er-shell UCNPs reveals a co-doped, intermixed region between the single-doped core and shell. The impact of these different dopant ion distributions on the UCNP's optical properties is discussed to highlight their importance for UCNP functionality and the design of efficient UCNPs.


Assuntos
Érbio , Fluoretos , Nanopartículas , Itérbio , Ítrio , Cátions , Érbio/química , Fluoretos/química , Luminescência , Nanopartículas/química , Espectroscopia Fotoeletrônica , Raios X , Itérbio/química , Ítrio/química
2.
Small ; 18(14): e2105694, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35253364

RESUMO

The transition toward renewable energy sources requires low-cost, efficient, and durable electrocatalysts for green H2 production. Herein, an easy and highly scalable method to prepare MoS2 nanoparticles embedded in 3D partially reduced (pr) graphene oxide (GO) aerogel microspheres (MoS2 /prGOAMs) with controlled morphology and composition is described. Given their peculiar center-diverging mesoporous structure, which allows easy access to the active sites and optimal mass transport, and their efficient electron transfer facilitated by the intimate contact between the MoS2 and the 3D connected highly conductive pr-GO sheets, these materials exhibit a remarkable electrocatalytic activity in the hydrogen evolution reaction (HER). Ni atoms, either as single Ni atoms or NiO aggregates are then introduced in the MoS2 /prGOAMs hybrids, to facilitate water dissociation, which is the slowest step in alkaline HER, producing a bifunctional catalyst. After optimization, Ni-promoted MoS2 /prGOAMs obtained at 500 °C reach a remarkable η10 (overpotential at 10 mA cm-2 ) of 160 mV in 1 m KOH and 174 mV in 0.5 m H2 SO4 . Moreover, after chronopotentiometry tests (15 h) at a current density of 10 mA cm-2 , the η10 value improves to 147 mV in alkaline conditions, indicating an exceptional stability.

3.
Nanomaterials (Basel) ; 10(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610453

RESUMO

We have recently demonstrated in a previous work an appreciable photoelectrocatalytic (PEC) behavior towards hydrogen evolution reaction (HER) of a MoS2/Ag2S/Ag nanocomposite electrochemically deposited on a commercial writable Digital Versatile Disc (DVD), consisting therefore on an interesting strategy to convert a common waster product in an added-value material. Herein, we present the conjugation of this MoS2/Ag2S/Ag-DVD nanocomposite with thiol-terminated tetraphenylporphyrins, taking advantage of the grafting of thiol groups through covalent S-S bridges, for integrating the well-known porphyrins photoactivity into the nanocomposite. Moreover, we employ two thiol-terminated porphyrins with different hydrophilicity, demonstrating that they either suppress or improve the PEC-HER performance of the overall hybrid, as a function of the molecule polarity, sustaining the concept of a local proton relay. Actually, the active polar porphyrin-MoS2/Ag2S/Ag-DVD hybrid material presented, when illuminated, a better HER performance, compared to the pristine nanocomposite, since the porphyrin may inject photoelectrons in the conduction band of the semiconductors at the formed heterojunction, presenting also a stable operational behavior during overnight chopped light chronoamperometric measurement, thanks to the robust bond created.

4.
ACS Appl Mater Interfaces ; 12(28): 31448-31458, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32558537

RESUMO

The design and development of environmentally friendly and robust anodes for photoelectrochemical (PEC) water splitting plays a critical role for the efficient conversion of radiant energy into hydrogen fuel. In this regard, quasi-1D copper vanadates (CuV2O6) were grown on conductive substrates by a hydrothermal procedure and processed for use as anodes in PEC cells, with particular attention on the role exerted by cobalt oxide (CoOx) overlayers deposited by radio frequency (RF) sputtering. The target materials were characterized in detail by a multitechnique approach with the aim at elucidating the interplay between their structure, composition, morphology, and the resulting activity as photoanodes. Functional tests were performed by standard electrochemical techniques like linear sweep voltammetry, impedance spectroscopy, and by the less conventional intensity modulated photocurrent spectroscopy, yielding an important insight into the material PEC properties. The obtained results highlight that, despite the fact that the supposedly favorable band alignment between CuV2O6 and Co3O4 did not yield a net current density increase, cobalt oxide-functionalized anodes afforded a remarkable durability enhancement, an important prerequisite for their eventual real-world applications. The concurrent phenomena accounting for the observed behavior are presented and discussed in relation to material physico-chemical properties.

5.
Nanomaterials (Basel) ; 8(7)2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022003

RESUMO

This paper describes the preparation and the photoelectrochemical performances of visible light driven photoanodes based on novel r-GO/ß-Cu2V2O7/TiO2 nanorods/composites. ß-Cu2V2O7 was deposited on both fluorine doped tin oxide (FTO) and TiO2 nanorods (NRs)/FTO by a fast and convenient Aerosol Assisted Spray Pyrolysis (AASP) procedure. Ethylenediamine (EN), ammonia and citric acid (CA) were tested as ligands for Cu2+ ions in the aerosol precursors solution. The best-performing deposits, in terms of photocurrent density, were obtained when NH3 was used as ligand. When ß-Cu2V2O7 was deposited on the TiO2 NRs a good improvement in the durability of the photoanode was obtained, compared with pure ß-Cu2V2O7 on FTO. A further remarkable improvement in durability and photocurrent density was obtained upon addition, by electrophoretic deposition, of reduced graphene oxide (r-GO) flakes on the ß-Cu2V2O7/TiO2 composite material. The samples were characterized by X-ray Photoelectron Spectroscopy (XPS), Raman, High Resolution Transmission Electron Microscopy (HR-TEM), Scanning Electron Microscopy (SEM), Wide Angle X-ray Diffraction (WAXD) and UV-Vis spectroscopies. The photoelectrochemical (PEC) performances of ß-Cu2V2O7 on FTO, ß-Cu2V2O7/TiO2 and r-GO/ß-Cu2V2O7/TiO2 were tested in visible light by linear voltammetry and Electrochemical Impedance Spectroscopy (EIS) measurements.

6.
ACS Omega ; 2(6): 2792-2802, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457617

RESUMO

In this article, we describe the deposition by aerosol-assisted spray pyrolysis of different types of silver vanadate nanocomposites with and without graphene oxide (GO) on different substrates (carbon paper (CP) and fluorine-doped tin oxide (FTO)). When deposited on CP, different amounts of GO were added to the Ag and V precursor solution to study the effect of GO on the physicochemical properties of the resulting Ag-vanadate. It is shown that the addition of GO leads mainly to the formation of nanoparticles of the Ag2V4O11 phase, whereas Ag2V4O11 and Ag3VO4 are obtained without the addition of GO. The morphology and chemical properties of the composites were determined by scanning and transmission electron microscopies, X-ray diffraction, X-ray photoemission spectroscopy, and UV-visible and Raman spectroscopies. In addition, the photoelectrochemical (PEC) properties of such composites were studied by CV, linear sweep voltammetry, and electrochemical impedance spectroscopy. The ideal Ag x VO y and GO ratio was optimized for obtaining higher photocurrent values and a good stability. The results showed that the presence of GO improves the electrical conductivity of the catalyst layer as well as the electron injection from the oxide to the electrode surface. The deposition of pure Ag2V4O11 on FTO does not lead to samples with stable PEC performances. Samples grown on CP supports showed an efficient electrochemical detection of small amounts of ethylenediamine in water solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA