Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
2.
Front Immunol ; 13: 930963, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844523

RESUMO

The thymus is a primary lymphoid organ essential for the induction of central immune tolerance. Maturing T cells undergo several steps of expansion and selection mediated by thymic epithelial cells (TECs). In APECED and other congenital pathologies, a deficiency in genes that regulate TEC development or their ability to select non auto-reactive thymocytes results in a defective immune balance, and consequently in a general autoimmune syndrome. Restoration of thymic function is thus crucial for the emergence of curative treatments. The last decade has seen remarkable progress in both gene editing and pluripotent stem cell differentiation, with the emergence of CRISPR-based gene correction, the trivialization of reprogramming of somatic cells to induced pluripotent stem cells (iPSc) and their subsequent differentiation into multiple cellular fates. The combination of these two approaches has paved the way to the generation of genetically corrected thymic organoids and their use to control thymic genetic pathologies affecting self-tolerance. Here we review the recent advances in differentiation of iPSc into TECs and the ability of the latter to support a proper and efficient maturation of thymocytes into functional and non-autoreactive T cells. A special focus is given on thymus organogenesis and pathway modulation during iPSc differentiation, on the impact of the 2/3D structure on the generated TECs, and on perspectives for therapeutic strategies in APECED based on patient-derived iPSc corrected for AIRE gene mutations.


Assuntos
Células-Tronco Pluripotentes , Poliendocrinopatias Autoimunes , Diferenciação Celular , Células Epiteliais , Humanos , Organoides
3.
Cell Mol Life Sci ; 79(7): 355, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678896

RESUMO

Thymically-derived Foxp3+ regulatory T cells (Treg) critically control immunological tolerance. These cells are generated in the medulla through high affinity interactions with medullary thymic epithelial cells (mTEC) expressing the Autoimmune regulator (Aire). Recent advances have revealed that thymic Treg contain not only developing but also recirculating cells from the periphery. Although Aire is implicated in the generation of Foxp3+ Treg, its role in the biology of recirculating Treg remains elusive. Here, we show that Aire regulates the suppressive signature of recirculating Treg independently of the remodeling of the medullary 3D organization throughout life where Treg reside. Accordingly, the adoptive transfer of peripheral Foxp3+ Treg in AireKO recipients led to an impaired suppressive signature upon their entry into the thymus. Furthermore, recirculating Treg from AireKO mice failed to attenuate the severity of multiorgan autoimmunity, demonstrating that their suppressive function is altered. Using bone marrow chimeras, we reveal that mTEC-specific expression of Aire controls the suppressive signature of recirculating Treg. Finally, mature mTEC lacking Aire were inefficient in stimulating peripheral Treg both in polyclonal and antigen-specific co-culture assays. Overall, this study demonstrates that Aire confers to mTEC the ability to restimulate recirculating Treg, unravelling a novel function for this master regulator in Treg biology.


Assuntos
Tolerância Imunológica , Linfócitos T Reguladores , Animais , Autoimunidade , Células Epiteliais/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Camundongos , Timo
4.
Elife ; 112022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35188458

RESUMO

Interactions of developing T cells with Aire+ medullary thymic epithelial cells expressing high levels of MHCII molecules (mTEChi) are critical for the induction of central tolerance in the thymus. In turn, thymocytes regulate the cellularity of Aire+ mTEChi. However, it remains unknown whether thymocytes control the precursors of Aire+ mTEChi that are contained in mTEClo cells or other mTEClo subsets that have recently been delineated by single-cell transcriptomic analyses. Here, using three distinct transgenic mouse models, in which antigen presentation between mTECs and CD4+ thymocytes is perturbed, we show by high-throughput RNA-seq that self-reactive CD4+ thymocytes induce key transcriptional regulators in mTEClo and control the composition of mTEClo subsets, including Aire+ mTEChi precursors, post-Aire and tuft-like mTECs. Furthermore, these interactions upregulate the expression of tissue-restricted self-antigens, cytokines, chemokines, and adhesion molecules important for T-cell development. This gene activation program induced in mTEClo is combined with a global increase of the active H3K4me3 histone mark. Finally, we demonstrate that these self-reactive interactions between CD4+ thymocytes and mTECs critically prevent multiorgan autoimmunity. Our genome-wide study thus reveals that self-reactive CD4+ thymocytes control multiple unsuspected facets from immature stages of mTECs, which determines their heterogeneity.


Assuntos
Autoantígenos/fisiologia , Células Epiteliais/fisiologia , Timócitos/fisiologia , Timo , Animais , Linfócitos T CD4-Positivos , Proteínas de Ligação a DNA , Epitélio/fisiologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histonas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso , Transdução de Sinais
5.
EMBO Rep ; 23(3): e53576, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35037357

RESUMO

Aire allows medullary thymic epithelial cells (mTECs) to express and present a large number of self-antigens for central tolerance. Although mTECs express a high diversity of self-antigen splice isoforms, the extent and regulation of alternative splicing events (ASEs) in their transcripts, notably in those induced by Aire, is unknown. In contrast to Aire-neutral genes, we find that transcripts of Aire-sensitive genes show only a low number of ASEs in mTECs, with about a quarter present in peripheral tissues excluded from the thymus. We identify Raver2, as a splicing-related factor overexpressed in mTECs and dependent on H3K36me3 marks, that promotes ASEs in transcripts of Aire-neutral genes, leaving Aire-sensitive ones unaffected. H3K36me3 profiling reveals its depletion at Aire-sensitive genes and supports a mechanism that is preceding Aire expression leading to transcripts of Aire-sensitive genes with low ASEs that escape Raver2-induced alternative splicing. The lack of ASEs in Aire-induced transcripts would result in an incomplete Aire-dependent negative selection of autoreactive T cells, thus highlighting the need of complementary tolerance mechanisms to prevent activation of these cells in the periphery.


Assuntos
Células Epiteliais , Linfócitos T , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Diferenciação Celular/genética , Células Epiteliais/metabolismo , Epitélio , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Timo
6.
Diabetes ; 70(12): 2879-2891, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34561224

RESUMO

In type 1 diabetes, autoimmune ß-cell destruction may be favored by neoantigens harboring posttranslational modifications (PTMs) such as citrullination. We studied the recognition of native and citrullinated glucose-regulated protein (GRP)78 peptides by CD8+ T cells. Citrullination modulated T-cell recognition and, to a lesser extent, HLA-A2 binding. GRP78-reactive CD8+ T cells circulated at similar frequencies in healthy donors and donors with type 1 diabetes and preferentially recognized either native or citrullinated versions, without cross-reactivity. Rather, the preference for native GRP78 epitopes was associated with CD8+ T cells cross-reactive with bacterial mimotopes. In the pancreas, a dominant GRP78 peptide was instead preferentially recognized when citrullinated. To further clarify these recognition patterns, we considered the possibility of citrullination in the thymus. Citrullinating peptidylarginine deiminase (Padi) enzymes were expressed in murine and human medullary epithelial cells (mTECs), with citrullinated proteins detected in murine mTECs. However, Padi2 and Padi4 expression was diminished in mature mTECs from NOD mice versus C57BL/6 mice. We conclude that, on one hand, the CD8+ T cell preference for native GRP78 peptides may be shaped by cross-reactivity with bacterial mimotopes. On the other hand, PTMs may not invariably favor loss of tolerance because thymic citrullination, although impaired in NOD mice, may drive deletion of citrulline-reactive T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citrulinação/fisiologia , Diabetes Mellitus Tipo 1/imunologia , Chaperona BiP do Retículo Endoplasmático/imunologia , Epitopos de Linfócito T/metabolismo , Adolescente , Adulto , Animais , Criança , Citrulinação/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Chaperona BiP do Retículo Endoplasmático/química , Chaperona BiP do Retículo Endoplasmático/metabolismo , Epitopos de Linfócito T/química , Feminino , Humanos , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Processamento de Proteína Pós-Traducional/imunologia , Processamento de Proteína Pós-Traducional/fisiologia , Adulto Jovem
7.
Dis Model Mech ; 14(2)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33729987

RESUMO

Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is a rare life-threatening autoimmune disease that attacks multiple organs and has its onset in childhood. It is an inherited condition caused by a variety of mutations in the autoimmune regulator (AIRE) gene that encodes a protein whose function has been uncovered by the generation and study of Aire-KO mice. These provided invaluable insights into the link between AIRE expression in medullary thymic epithelial cells (mTECs), and the broad spectrum of self-antigens that these cells express and present to the developing thymocytes. However, these murine models poorly recapitulate all phenotypic aspects of human APECED. Unlike Aire-KO mice, the recently generated Aire-KO rat model presents visual features, organ lymphocytic infiltrations and production of autoantibodies that resemble those observed in APECED patients, making the rat model a main research asset. In addition, ex vivo models of AIRE-dependent self-antigen expression in primary mTECs have been successfully set up. Thymus organoids based on pluripotent stem cell-derived TECs from APECED patients are also emerging, and constitute a promising tool to engineer AIRE-corrected mTECs and restore the generation of regulatory T cells. Eventually, these new models will undoubtedly lead to main advances in the identification and assessment of specific and efficient new therapeutic strategies aiming to restore immunological tolerance in APECED patients.


Assuntos
Modelos Animais de Doenças , Poliendocrinopatias Autoimunes/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Animais , Autoanticorpos , Autoantígenos , Doenças Autoimunes/metabolismo , Técnicas de Cocultura , Células Epiteliais/metabolismo , Humanos , Tolerância Imunológica , Imunoterapia/métodos , Queratinócitos/citologia , Camundongos , Mutação , Organoides/metabolismo , Fenótipo , Mutação Puntual , Poliendocrinopatias Autoimunes/imunologia , Poliendocrinopatias Autoimunes/metabolismo , Ratos , Timócitos/metabolismo , Timo/metabolismo , Fatores de Transcrição/fisiologia , Proteína AIRE
8.
PLoS Pathog ; 17(2): e1009042, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33592065

RESUMO

The BK polyomavirus (BKPyV) is a ubiquitous human virus that persists in the renourinary epithelium. Immunosuppression can lead to BKPyV reactivation in the first year post-transplantation in kidney transplant recipients (KTRs) and hematopoietic stem cell transplant recipients. In KTRs, persistent DNAemia has been correlated to the occurrence of polyomavirus-associated nephropathy (PVAN) that can lead to graft loss if not properly controlled. Based on recent observations that conventional dendritic cells (cDCs) specifically infiltrate PVAN lesions, we hypothesized that those cells could play a role in BKPyV infection. We first demonstrated that monocyte-derived dendritic cells (MDDCs), an in vitro model for mDCs, captured BKPyV particles through an unconventional GRAF-1 endocytic pathway. Neither BKPyV particles nor BKPyV-infected cells were shown to activate MDDCs. Endocytosed virions were efficiently transmitted to permissive cells and protected from the antibody-mediated neutralization. Finally, we demonstrated that freshly isolated CD1c+ mDCs from the blood and kidney parenchyma behaved similarly to MDDCs thus extending our results to cells of clinical relevance. This study sheds light on a potential unprecedented CD1c+ mDC involvement in the BKPyV infection as a promoter of viral spreading.


Assuntos
Antígenos CD1/metabolismo , Vírus BK/imunologia , Células Dendríticas/imunologia , Células Epiteliais/imunologia , Glicoproteínas/metabolismo , Rim/imunologia , Infecções por Polyomavirus/imunologia , Infecções Tumorais por Vírus/imunologia , Anticorpos Neutralizantes/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Rim/metabolismo , Rim/virologia , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/virologia , Infecções por Polyomavirus/metabolismo , Infecções por Polyomavirus/virologia , Infecções Tumorais por Vírus/metabolismo , Infecções Tumorais por Vírus/virologia , Replicação Viral
9.
Elife ; 92020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32338592

RESUMO

The ability of the immune system to avoid autoimmune disease relies on tolerization of thymocytes to self-antigens whose expression and presentation by thymic medullary epithelial cells (mTECs) is controlled predominantly by Aire at the transcriptional level and possibly regulated at other unrecognized levels. Aire-sensitive gene expression is influenced by several molecular factors, some of which belong to the 3'end processing complex, suggesting they might impact transcript stability and levels through an effect on 3'UTR shortening. We discovered that Aire-sensitive genes display a pronounced preference for short-3'UTR transcript isoforms in mTECs, a feature preceding Aire's expression and correlated with the preferential selection of proximal polyA sites by the 3'end processing complex. Through an RNAi screen and generation of a lentigenic mouse, we found that one factor, Clp1, promotes 3'UTR shortening associated with higher transcript stability and expression of Aire-sensitive genes, revealing a post-transcriptional level of control of Aire-activated expression in mTECs.


Assuntos
Regiões 3' não Traduzidas/genética , Diferenciação Celular/imunologia , Timócitos/metabolismo , Timo/metabolismo , Animais , Diferenciação Celular/genética , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/genética , Camundongos
10.
Cell Metab ; 30(6): 1075-1090.e8, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31801055

RESUMO

Cell therapy is a promising strategy for treating patients suffering from autoimmune or inflammatory diseases or receiving a transplant. Based on our preclinical studies, we have generated human autologous tolerogenic dendritic cells (ATDCs), which are being tested in a first-in-man clinical trial in kidney transplant recipients. Here, we report that ATDCs represent a unique subset of monocyte-derived cells based on phenotypic, transcriptomic, and metabolic analyses. ATDCs are characterized by their suppression of T cell proliferation and their expansion of Tregs through secreted factors. ATDCs produce high levels of lactate that shape T cell responses toward tolerance. Indeed, T cells take up ATDC-secreted lactate, leading to a decrease of their glycolysis. In vivo, ATDCs promote elevated levels of circulating lactate and delay graft-versus-host disease by reducing T cell proliferative capacity. The suppression of T cell immunity through lactate production by ATDCs is a novel mechanism that distinguishes ATDCs from other cell-based immunotherapies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Tolerância Imunológica , Terapia de Imunossupressão , Ácido Láctico/biossíntese , Animais , Doenças Autoimunes/terapia , Linfócitos T CD4-Positivos/citologia , Células Cultivadas , Células Dendríticas/metabolismo , Feminino , Humanos , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Monócitos/imunologia
11.
J Chromatogr A ; 1513: 78-83, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28739271

RESUMO

Dirucotide is a synthetic drug candidate for the treatment of multiple sclerosis. This 17-aminoacid peptide was successfully purified by ion exchange centrifugal partition chromatography. The optimized conditions involved the biphasic methyl tert-butyl ether/acetonitrile/n-butanol/water (2:1:2:5, v/v) solvent system in the descending mode, the di(2-ethylhexyl)phosphoric acid cation-exchanger with an exchanger (di(2-ethylhexyl)phosphoric acid)/dirucotide mole ratio of 100 and Ca2+ ions in aqueous solution as displacer. Critical impurities were efficiently eliminated and dirucotide was recovered in high yield and purity (69% and 98%, respectively) and with a productivity of 2.29g per liter of stationary phase per hour.


Assuntos
Proteína Básica da Mielina/isolamento & purificação , Fragmentos de Peptídeos/isolamento & purificação , 1-Butanol/química , Acetonitrilas/química , Cálcio/química , Centrifugação , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica/métodos , Éteres Metílicos/química , Proteína Básica da Mielina/química , Fragmentos de Peptídeos/química , Solventes/química , Água/química
12.
Nat Immunol ; 18(2): 161-172, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27941786

RESUMO

Aire is a transcriptional regulator that induces promiscuous expression of thousands of genes encoding tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs). While the target genes of Aire are well characterized, the transcriptional programs that regulate its own expression have remained elusive. Here we comprehensively analyzed both cis-acting and trans-acting regulatory mechanisms and found that the Aire locus was insulated by the global chromatin organizer CTCF and was hypermethylated in cells and tissues that did not express Aire. In mTECs, however, Aire expression was facilitated by concurrent eviction of CTCF, specific demethylation of exon 2 and the proximal promoter, and the coordinated action of several transcription activators, including Irf4, Irf8, Tbx21, Tcf7 and Ctcfl, which acted on mTEC-specific accessible regions in the Aire locus.


Assuntos
Células Epiteliais/imunologia , Redes Reguladoras de Genes , Linfócitos T/fisiologia , Timo/imunologia , Fatores de Transcrição/metabolismo , Animais , Apresentação de Antígeno/genética , Autoantígenos/metabolismo , Fator de Ligação a CCCTC , Diferenciação Celular , Células Cultivadas , Seleção Clonal Mediada por Antígeno , Metilação de DNA , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Especificidade de Órgãos/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Timo/citologia , Fatores de Transcrição/genética , Proteína AIRE
13.
Genome Biol ; 17(1): 219, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27776542

RESUMO

BACKGROUND: In order to become functionally competent but harmless mediators of the immune system, T cells undergo a strict educational program in the thymus, where they learn to discriminate between self and non-self. This educational program is, to a large extent, mediated by medullary thymic epithelial cells that have a unique capacity to express, and subsequently present, a large fraction of body antigens. While the scope of promiscuously expressed genes by medullary thymic epithelial cells is well-established, relatively little is known about the expression of variants that are generated by co-transcriptional and post-transcriptional processes. RESULTS: Our study reveals that in comparison to other cell types, medullary thymic epithelial cells display significantly higher levels of alternative splicing, as well as A-to-I and C-to-U RNA editing, which thereby further expand the diversity of their self-antigen repertoire. Interestingly, Aire, the key mediator of promiscuous gene expression in these cells, plays a limited role in the regulation of these transcriptional processes. CONCLUSIONS: Our results highlight RNA processing as another layer by which the immune system assures a comprehensive self-representation in the thymus which is required for the establishment of self-tolerance and prevention of autoimmunity.


Assuntos
Células Epiteliais/imunologia , Edição de RNA/genética , Timo/imunologia , Processamento Alternativo/genética , Processamento Alternativo/imunologia , Animais , Autoantígenos/genética , Autoantígenos/imunologia , Diferenciação Celular/imunologia , Regulação da Expressão Gênica/imunologia , Humanos , Camundongos , Edição de RNA/imunologia , Tolerância a Antígenos Próprios/imunologia , Linfócitos T/imunologia , Fatores de Transcrição/genética
14.
Nat Immunol ; 16(7): 737-45, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26006015

RESUMO

Aire is a transcriptional regulator that induces the promiscuous expression of thousands of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs), a step critical for the induction of immunological self-tolerance. Studies have offered molecular insights into how Aire operates, but more comprehensive understanding of this process still remains elusive. Here we found abundant expression of the protein deacetylase Sirtuin-1 (Sirt1) in mature Aire(+) mTECs, wherein it was required for the expression of Aire-dependent TRA-encoding genes and the subsequent induction of immunological self-tolerance. Our study elucidates a previously unknown molecular mechanism for Aire-mediated transcriptional regulation and identifies a unique function for Sirt1 in preventing organ-specific autoimmunity.


Assuntos
Tolerância Central/imunologia , Sirtuína 1/imunologia , Fatores de Transcrição/imunologia , Ativação Transcricional/imunologia , Acetilação , Animais , Antígenos/imunologia , Tolerância Central/genética , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Immunoblotting , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos/imunologia , Ligação Proteica/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirtuína 1/genética , Sirtuína 1/metabolismo , Timo/citologia , Timo/imunologia , Timo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/imunologia , Proteína AIRE
15.
Arthritis Res Ther ; 17: 71, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25880423

RESUMO

INTRODUCTION: Systemic sclerosis (SSc) and primary biliary cirrhosis (PBC) are rare polygenic autoimmune diseases (AIDs) characterized by fibroblast dysfunction. Furthermore, both diseases share some genetic bases with other AIDs, as evidenced by autoimmune gene pleiotropism. The present study was undertaken to investigate whether single-nucleotide polymorphisms (SNPs) identified by a large genome-wide association study (GWAS) in PBC might contribute to SSc susceptibility. METHODS: Sixteen PBC susceptibility SNPs were genotyped in a total of 1,616 patients with SSc and 3,621 healthy controls from two European populations (France and Italy). RESULTS: We observed an association between PLCL2 rs1372072 (odds ratio (OR) = 1.22, 95% confidence interval (CI) 1.12 to 1.33, P adj = 7.22 × 10(-5)), nuclear factor-kappa-B (NF-κB) rs7665090 (OR = 1.15, 95% CI 1.06 to 1.25, P adj = 0.01), and IRF8 rs11117432 (OR = 0.75, 95% CI 0.67 to 0.86, P adj = 2.49 × 10(-4)) with SSc susceptibility. Furthermore, phenotype stratification showed an association between rs1372072 and rs11117432 with the limited cutaneous subgroup (lcSSc) (P adj = 4.45 × 10(-4) and P adj = 0.001), whereas rs7665090 was associated with the diffuse cutaneous subtype (dcSSc) (P adj = 0.003). Genotype-mRNA expression correlation analysis revealed that the IRF8 protective allele was associated with increased interferon-gamma (IFN-γ) expression (P = 0.03) in patients with SSc but decreased type I IFN (IFIT1) expression in patients and controls (P = 0.02). In addition, we found an epistatic interaction between NF-κB and IRF8 (OR = 0.56, 95% CI 0.00 to 0.74, P = 4 × 10(-4)) which in turn revealed that the IRF8 protective effect is dependent on the presence of the NF-κB susceptibility allele. CONCLUSIONS: An analysis of pleiotropic genes identified two new susceptibility genes for SSc (NF-κB and PLCL2) and confirmed the IRF8 locus. Furthermore, the IRF8 variant influenced the IFN signature, and we found an interaction between IRF8 and NF-κB gene variants that might play a role in SSc susceptibility.


Assuntos
Predisposição Genética para Doença/genética , Fatores Reguladores de Interferon/genética , Interferon gama/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , NF-kappa B/genética , Escleroderma Sistêmico/genética , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Fatores Reguladores de Interferon/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Masculino , Pessoa de Meia-Idade , NF-kappa B/biossíntese , Polimorfismo de Nucleotídeo Único/genética , Escleroderma Sistêmico/patologia
16.
J Chromatogr A ; 1337: 155-61, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24630060

RESUMO

Protected synthetic peptide intermediates are often hydrophobic and not soluble in most common solvents. They are thus difficult to purify by preparative reversed-phase high-performance liquid chromatography (RP-HPLC), usually used for industrial production. It is then challenging to develop alternative chromatographic purification processes. Support-free liquid-liquid chromatographic techniques, including both hydrostatic (centrifugal partition chromatography or CPC) and hydrodynamic (counter-current chromatography or CCC) devices, are mainly involved in phytochemical studies but have also been applied to synthetic peptide purification. In this framework, two new biphasic solvent system compositions covering a wide range of polarity were developed to overcome solubility problems mentioned above. The new systems composed of heptane/tetrahydrofuran/acetonitrile/dimethylsulfoxide/water and heptane/methyl-tetrahydrofuran/N-methylpyrrolidone/water were efficiently used for the CPC purification of a 39-mer protected exenatide (Byetta®) and a 8-mer protected peptide intermediate of bivalirudin (Angiox®) synthesis. Phase compositions of the different biphasic solvent systems were determined by (1)H nuclear magnetic resonance. Physico-chemical properties including viscosity, density and interfacial tension of these biphasic systems are also described.


Assuntos
Hirudinas/isolamento & purificação , Fragmentos de Peptídeos/isolamento & purificação , Peptídeos/isolamento & purificação , Solventes/química , Peçonhas/isolamento & purificação , Distribuição Contracorrente/métodos , Exenatida , Espectroscopia de Ressonância Magnética , Proteínas Recombinantes/isolamento & purificação , Solubilidade
17.
J Sep Sci ; 37(11): 1222-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24668688

RESUMO

A new type 1 ternary biphasic system composed of cyclopentyl methyl ether, dimethylformamide and water was developed, characterized and successfully used for the purification of a lipophilic, protected peptide by pH-zone refining centrifugal partition chromatography. The protected peptide is an 8-mer, key intermediate in bivalirudin (Angiomax®) synthesis and shows a very low solubility in the solvents usually used in liquid chromatography. All ionic groups, except the N-terminal end of the peptide, are protected by a benzyl group. The purification of this peptide was achieved with a purity of about 99.04% and a recovery of 94% using the new ternary biphasic system cyclopentyl methyl ether/dimethylformamide/water (49:40:11, v/v) in the descending pH-zone refining mode with triethylamine (28 mM) as the retainer and methanesulfonic acid (18 mM) as the eluter.


Assuntos
Cromatografia Líquida/métodos , Peptídeos/isolamento & purificação , Cromatografia Líquida/instrumentação , Ciclopentanos/química , Concentração de Íons de Hidrogênio , Éteres Metílicos/química , Peptídeos/síntese química , Peptídeos/química , Solventes/química
18.
Proc Natl Acad Sci U S A ; 111(4): 1491-6, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24434558

RESUMO

Aire induces the expression of a large set of autoantigen genes in the thymus, driving immunological tolerance in maturing T cells. To determine the full spectrum of molecular mechanisms underlying the Aire transactivation function, we screened an AIRE-dependent gene-expression system with a genome-scale lentiviral shRNA library, targeting factors associated with chromatin architecture/function, transcription, and mRNA processing. Fifty-one functional allies were identified, with a preponderance of factors that impact transcriptional elongation compared with initiation, in particular members of the positive transcription elongation factor b (P-TEFb) involved in the release of "paused" RNA polymerases (CCNT2 and HEXIM1); mRNA processing and polyadenylation factors were also highlighted (HNRNPL/F, SFRS1, SFRS3, and CLP1). Aire's functional allies were validated on transfected and endogenous target genes, including the generation of lentigenic knockdown (KD) mice. We uncovered the effect of the splicing factor Hnrnpl on Aire-induced transcription. Transcripts sensitive to the P-TEFb inhibitor flavopiridol were reduced by Hnrnpl knockdown in thymic epithelial cells, independently of their dependence on Aire, therefore indicating a general effect of Hnrnpl on RNA elongation. This conclusion was substantiated by demonstration of HNRNPL interactions with P-TEFb components (CDK9, CCNT2, HEXIM1, and the small 7SK RNA). Aire-containing complexes include 7SK RNA, the latter interaction disrupted by HNRNPL knockdown, suggesting that HNRNPL may partake in delivering inactive P-TEFb to Aire. Thus, these results indicate that mRNA processing factors cooperate with Aire to release stalled polymerases and to activate ectopic expression of autoantigen genes in the thymus.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/fisiologia , Interferência de RNA , Fatores de Transcrição/genética , Transcrição Gênica/fisiologia , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Camundongos , Fatores de Transcrição/fisiologia , Proteína AIRE
19.
J Chromatogr A ; 1311: 72-8, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24011727

RESUMO

Synthetic hydrophobic non-ionizable peptides are not soluble in most common solvents and are thus difficult to purify by preparative reversed-phase HPLC, normally used for industrial production. The challenge exists to develop alternative purification chromatographic processes using suitable solvents and providing good yields, high purity and sufficient productivity. A 11mer hydrophobic synthetic modified cyclosporine, showing an anti-HIV activity, was successfully purified by centrifugal partition chromatography using the biphasic solvent system heptane/ethyl acetate/acetone/methanol/water (1:2:2:1:2, v/v). A 5% co-current elution - made possible by the liquid nature of the two phases - has been used in order to avoid hydrodynamic instabilities mainly due to the physico-chemical properties of the target peptide. This original solution was developed after the study of the effect of the peptide on the hydrodynamic behavior of the two phases during the separation, and the visualization of the flow patterns using the Visual-CPC device. Critical impurities were efficiently eliminated and the peptide was recovered in high yield and high productivity achieving the specifications requirements.


Assuntos
Fármacos Anti-HIV/isolamento & purificação , Centrifugação/instrumentação , Cromatografia Líquida/instrumentação , Ciclosporina/isolamento & purificação , Acetatos/química , Fármacos Anti-HIV/química , Ciclosporina/química , Desenho de Equipamento , Metanol/química , Solventes/química
20.
Org Lett ; 14(21): 5468-71, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23075145

RESUMO

Trimethoxyphenylthio (S-Tmp) is described as a novel cysteine protecting group in Fmoc solid phase peptide synthesis replacing the difficult to remove tert-butylthio. S-Tmp and dimethoxyphenylthio (S-Dmp) were successfully used for cysteine protection in a variety of peptides. Moreover, both groups can be removed in 5 min with mild reducing agents. S-Tmp is recommended for cysteine protection, as it yields crude peptides of high purity.


Assuntos
Cisteína/química , Dissulfetos/química , Ocitocina/síntese química , Peptídeos/síntese química , Compostos de Sulfidrila/síntese química , Estrutura Molecular , Ocitocina/química , Peptídeos/química , Técnicas de Síntese em Fase Sólida , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA