Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Genet ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38677904

RESUMO

Progressive recombination loss is a common feature of sex chromosomes. Yet, the evolutionary drivers of this phenomenon remain a mystery. For decades, differences in trait optima between sexes (sexual antagonism) have been the favoured hypothesis, but convincing evidence is lacking. Recent years have seen a surge of alternative hypotheses to explain progressive extensions and maintenance of recombination suppression: neutral accumulation of sequence divergence, selection of nonrecombining fragments with fewer deleterious mutations than average, sheltering of recessive deleterious mutations by linkage to heterozygous alleles, early evolution of dosage compensation, and constraints on recombination restoration. Here, we explain these recent hypotheses and dissect their assumptions, mechanisms, and predictions. We also review empirical studies that have brought support to the various hypotheses.

2.
bioRxiv ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38496565

RESUMO

A wide diversity of mating systems occur in nature, with frequent evolutionary transitions in mating-compatibility mechanisms. Basidiomycete fungi typically have two mating-type loci controlling mating compatibility, HD and PR, usually residing on different chromosomes. In Microbotryum anther-smut fungi, there have been repeated events of linkage between the two mating-type loci through chromosome fusions, leading to large non-recombining regions. By generating high-quality genome assemblies, we found that two sister Microbotryum species parasitizing Dianthus plants, M. superbum and M. shykoffianum, as well as the distantly related M. scorzonarae, have their HD and PR mating-type loci on different chromosomes, but with the PR mating-type chromosome fused with part of the ancestral HD chromosome. Furthermore, progressive extensions of recombination suppression have generated evolutionary strata. In all three species, rearrangements suggest the existence of a transient stage of HD-PR linkage by whole chromosome fusion, and, unexpectedly, the HD genes lost their function. In M. superbum, multiple natural diploid strains were homozygous, and the disrupted HD2 gene was hardly expressed. Mating tests confirmed that a single genetic factor controlled mating compatibility (i.e. PR) and that haploid strains with identical HD alleles could mate and produce infectious hyphae. The HD genes have therefore lost their function in the control of mating compatibility in these Microbotryum species. While the loss of function of PR genes in mating compatibility has been reported in a few basidiomycete fungi, these are the first documented cases for the loss of mating-type determination by HD genes in heterothallic fungi. The control of mating compatibility by a single genetic factor is beneficial under selfing and can thus be achieved repeatedly, through evolutionary convergence in distant lineages, involving different genomic or similar pathways.

3.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38386982

RESUMO

The filamentous fungus Podospora anserina is a model organism used extensively in the study of molecular biology, senescence, prion biology, meiotic drive, mating-type chromosome evolution, and plant biomass degradation. It has recently been established that P. anserina is a member of a complex of 7 closely related species. In addition to P. anserina, high-quality genomic resources are available for 2 of these taxa. Here, we provide chromosome-level annotated assemblies of the 4 remaining species of the complex, as well as a comprehensive data set of annotated assemblies from a total of 28 Podospora genomes. We find that all 7 species have genomes of around 35 Mb arranged in 7 chromosomes that are mostly collinear and less than 2% divergent from each other at genic regions. We further attempt to resolve their phylogenetic relationships, finding significant levels of phylogenetic conflict as expected from a rapid and recent diversification.


Assuntos
Podospora , Podospora/genética , Filogenia , Reprodução , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
4.
Mol Ecol ; 33(2): e17223, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38014746

RESUMO

The study of microbiomes across organisms and environments has become a prominent focus in molecular ecology. This perspective article explores common challenges, methodological advancements, and future directions in the field. Key research areas include understanding the drivers of microbiome community assembly, linking microbiome composition to host genetics, exploring microbial functions, transience and spatial partitioning, and disentangling non-bacterial components of the microbiome. Methodological advancements, such as quantifying absolute abundances, sequencing complete genomes, and utilizing novel statistical approaches, are also useful tools for understanding complex microbial diversity patterns. Our aims are to encourage robust practices in microbiome studies and inspire researchers to explore the next frontier of this rapidly changing field.


Assuntos
Bactérias , Microbiota , Microbiota/genética , Ecologia
5.
Evol Appl ; 16(9): 1637-1660, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37752962

RESUMO

Some fungi have been domesticated for food production, with genetic differentiation between populations from food and wild environments, and food populations often acquiring beneficial traits through horizontal gene transfers (HGTs). Studying their adaptation to human-made substrates is of fundamental and applied importance for understanding adaptation processes and for further strain improvement. We studied here the population structures and phenotypes of two distantly related Penicillium species used for dry-cured meat production, P. nalgiovense, the most common species in the dry-cured meat food industry, and P. salamii, used locally by farms. Both species displayed low genetic diversity, lacking differentiation between strains isolated from dry-cured meat and those from other environments. Nevertheless, the strains collected from dry-cured meat within each species displayed slower proteolysis and lipolysis than their wild conspecifics, and those of P. nalgiovense were whiter. Phenotypically, the non-dry-cured meat strains were more similar to their sister species than to their conspecific dry-cured meat strains, indicating an evolution of specific phenotypes in dry-cured meat strains. A comparison of available Penicillium genomes from various environments revealed HGTs, particularly between P. nalgiovense and P. salamii (representing almost 1.5 Mb of cumulative length). HGTs additionally involved P. biforme, also found in dry-cured meat products. We further detected positive selection based on amino acid changes. Our findings suggest that selection by humans has shaped the P. salamii and P. nalgiovense populations used for dry-cured meat production, which constitutes domestication. Several genetic and phenotypic changes were similar in P. salamii, P. nalgiovense and P. biforme, indicating convergent adaptation to the same human-made environment. Our findings have implications for fundamental knowledge on adaptation and for the food industry: the discovery of different phenotypes and of two mating types paves the way for strain improvement by conventional breeding, to elucidate the genomic bases of beneficial phenotypes and to generate diversity.

6.
Nat Commun ; 14(1): 5692, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709766

RESUMO

In the absence of recombination, the number of transposable elements (TEs) increases due to less efficient selection, but the dynamics of such TE accumulations are not well characterized. Leveraging a dataset of 21 independent events of recombination cessation of different ages in mating-type chromosomes of Microbotryum fungi, we show that TEs rapidly accumulated in regions lacking recombination, but that TE content reached a plateau at ca. 50% of occupied base pairs by 1.5 million years following recombination suppression. The same TE superfamilies have expanded in independently evolved non-recombining regions, in particular rolling-circle replication elements (Helitrons). Long-terminal repeat (LTR) retrotransposons of the Copia and Ty3 superfamilies also expanded, through transposition bursts (distinguished from gene conversion based on LTR divergence), with both non-recombining regions and autosomes affected, suggesting that non-recombining regions constitute TE reservoirs. This study improves our knowledge of genome evolution by showing that TEs can accumulate through bursts, following non-linear decelerating dynamics.


Assuntos
Elementos de DNA Transponíveis , Reprodução , Elementos de DNA Transponíveis/genética , Comunicação Celular , Replicação do DNA , Conversão Gênica
7.
Evol Appl ; 16(8): 1438-1457, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37622099

RESUMO

Domestication is an excellent case study for understanding adaptation and multiple fungal lineages have been domesticated for fermenting food products. Studying domestication in fungi has thus both fundamental and applied interest. Genomic studies have revealed the existence of four populations within the blue-cheese-making fungus Penicillium roqueforti. The two cheese populations show footprints of domestication, but the adaptation of the two non-cheese populations to their ecological niches (i.e., silage/spoiled food and lumber/spoiled food) has not been investigated yet. Here, we reveal the existence of a new P. roqueforti population, specific to French Termignon cheeses, produced using small-scale traditional practices, with spontaneous blue mould colonisation. This Termignon population is genetically differentiated from the four previously identified populations, providing a novel source of genetic diversity for cheese making. The Termignon population indeed displayed substantial genetic diversity, both mating types, horizontally transferred regions previously detected in the non-Roquefort population, and intermediate phenotypes between cheese and non-cheese populations. Phenotypically, the non-Roquefort cheese population was the most differentiated, with specific traits beneficial for cheese making, in particular higher tolerance to salt, to acidic pH and to lactic acid. Our results support the view that this clonal population, used for many cheese types in multiple countries, is a domesticated lineage on which humans exerted strong selection. The lumber/spoiled food and silage/spoiled food populations were not more tolerant to crop fungicides but showed faster growth in various carbon sources (e.g., dextrose, pectin, sucrose, xylose and/or lactose), which can be beneficial in their ecological niches. Such contrasted phenotypes between P. roqueforti populations, with beneficial traits for cheese-making in the cheese populations and enhanced ability to metabolise sugars in the lumber/spoiled food population, support the inference of domestication in cheese fungi and more generally of adaptation to anthropized environments.

9.
PLoS Genet ; 19(2): e1010347, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36763677

RESUMO

Recombination is often suppressed at sex-determining loci in plants and animals, and at self-incompatibility or mating-type loci in plants and fungi. In fungal ascomycetes, recombination suppression around the mating-type locus is associated with pseudo-homothallism, i.e. the production of self-fertile dikaryotic sexual spores carrying the two opposite mating types. This has been well studied in two species complexes from different families of Sordariales: Podospora anserina and Neurospora tetrasperma. However, it is unclear whether this intriguing association holds in other species. We show here that Schizothecium tetrasporum, a fungus from a third family in the order Sordariales, also produces mostly self-fertile dikaryotic spores carrying the two opposite mating types. This was due to a high frequency of second meiotic division segregation at the mating-type locus, indicating the occurrence of a single and systematic crossing-over event between the mating-type locus and the centromere, as in P. anserina. The mating-type locus has the typical Sordariales organization, plus a MAT1-1-1 pseudogene in the MAT1-2 haplotype. High-quality genome assemblies of opposite mating types and segregation analyses revealed a suppression of recombination in a region of 1.47 Mb around the mating-type locus. We detected three evolutionary strata, indicating a stepwise extension of recombination suppression. The three strata displayed no rearrangement or transposable element accumulation but gene losses and gene disruptions were present, and precisely at the strata margins. Our findings indicate a convergent evolution of self-fertile dikaryotic sexual spores across multiple ascomycete fungi. The particular pattern of meiotic segregation at the mating-type locus was associated with recombination suppression around this locus, that had extended stepwise. This association between pseudo-homothallism and recombination suppression across lineages and the presence of gene disruption at the strata limits are consistent with a recently proposed mechanism of sheltering deleterious alleles to explain stepwise recombination suppression.


Assuntos
Ascomicetos , Sordariales , Genes Fúngicos Tipo Acasalamento/genética , Reprodução/genética , Ascomicetos/genética , Sordariales/genética , Recombinação Genética/genética , Esporos
10.
Curr Opin Microbiol ; 70: 102236, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36368125

RESUMO

Humans have domesticated genetically distant fungi for similar uses, the fermentation of lipid-rich and sugar-rich food to generate attractive aspects, odor and aroma, and to improve shelf life and product safety. Multiple independent domestication events also occurred within species. We review recent evidence of phenotypic convergence during the domestication of fungi for making cheese (Saccharomyces cerevisiae, Penicillium roqueforti, P. camemberti, and Geotrichum candidum) and for dry-cured meat making (P. nalgiovense and P. salamii). Convergence following adaptation to similar ecological niches involved colony aspect (fluffiness and color), lipolysis, proteolysis, volatile compound production, and competitive ability against food spoilers. We review evidence for convergence in genetic diversity loss in domesticated populations and in the degeneration of unused traits, such as toxin production and sexual reproduction. Phenotypic convergence sometimes occurred by similar mechanisms of genomic adaptation, in particular horizontal gene transfers and loss of genes.


Assuntos
Queijo , Humanos , Queijo/microbiologia , Fungos/genética , Carne , Transferência Genética Horizontal , Genômica
11.
Mol Ecol ; 31(21): 5581-5601, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35984725

RESUMO

Divergence processes in crop-wild fruit tree complexes in pivotal regions for plant domestication such as the Caucasus and Iran remain little studied. We investigated anthropogenic and natural divergence processes in apples in these regions using 26 microsatellite markers amplified in 550 wild and cultivated samples. We found two genetically distinct cultivated populations in Iran that are differentiated from Malus domestica, the standard cultivated apple worldwide. Coalescent-based inferences showed that these two cultivated populations originated from specific domestication events of Malus orientalis in Iran. We found evidence of substantial wild-crop and crop-crop gene flow in the Caucasus and Iran, as has been described in apple in Europe. In addition, we identified seven genetically differentiated populations of wild apple (M. orientalis), not introgressed by the cultivated apple. Niche modelling combined with genetic diversity estimates indicated that these wild populations likely resulted from range changes during past glaciations. This study identifies Iran as a key region in the domestication of apple and M. orientalis as an additional contributor to the cultivated apple gene pool. Domestication of the apple tree therefore involved multiple origins of domestication in different geographic locations and substantial crop-wild hybridization, as found in other fruit trees. This study also highlights the impact of climate change on the natural divergence of a wild fruit tree and provides a starting point for apple conservation and breeding programmes in the Caucasus and Iran.


Assuntos
Malus , Malus/genética , Domesticação , Pool Gênico , Irã (Geográfico) , Melhoramento Vegetal
12.
PLoS Biol ; 20(7): e3001698, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35853091

RESUMO

Many organisms have sex chromosomes with large nonrecombining regions that have expanded stepwise, generating "evolutionary strata" of differentiation. The reasons for this remain poorly understood, but the principal hypotheses proposed to date are based on antagonistic selection due to differences between sexes. However, it has proved difficult to obtain empirical evidence of a role for sexually antagonistic selection in extending recombination suppression, and antagonistic selection has been shown to be unlikely to account for the evolutionary strata observed on fungal mating-type chromosomes. We show here, by mathematical modeling and stochastic simulation, that recombination suppression on sex chromosomes and around supergenes can expand under a wide range of parameter values simply because it shelters recessive deleterious mutations, which are ubiquitous in genomes. Permanently heterozygous alleles, such as the male-determining allele in XY systems, protect linked chromosomal inversions against the expression of their recessive mutation load, leading to the successive accumulation of inversions around these alleles without antagonistic selection. Similar results were obtained with models assuming recombination-suppressing mechanisms other than chromosomal inversions and for supergenes other than sex chromosomes, including those without XY-like asymmetry, such as fungal mating-type chromosomes. However, inversions capturing a permanently heterozygous allele were found to be less likely to spread when the mutation load segregating in populations was lower (e.g., under large effective population sizes or low mutation rates). This may explain why sex chromosomes remain homomorphic in some organisms but are highly divergent in others. Here, we model a simple and testable hypothesis explaining the stepwise extensions of recombination suppression on sex chromosomes, mating-type chromosomes, and supergenes in general.


Assuntos
Inversão Cromossômica , Cromossomos Sexuais , Genes Fúngicos Tipo Acasalamento , Humanos , Masculino , Mutação/genética , Recombinação Genética/genética , Cromossomos Sexuais/genética
13.
Mol Biol Evol ; 39(4)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35325190

RESUMO

Recombination is beneficial over the long term, allowing more effective selection. Despite long-term advantages of recombination, local recombination suppression can evolve and lead to genomic degeneration, in particular on sex chromosomes. Here, we investigated the tempo of degeneration in nonrecombining regions, that is, the function curve for the accumulation of deleterious mutations over time, leveraging on 22 independent events of recombination suppression identified on mating-type chromosomes of anther-smut fungi, including newly identified ones. Using previously available and newly generated high-quality genome assemblies of alternative mating types of 13 Microbotryum species, we estimated degeneration levels in terms of accumulation of nonoptimal codons and nonsynonymous substitutions in nonrecombining regions. We found a reduced frequency of optimal codons in the nonrecombining regions compared with autosomes, that was not due to less frequent GC-biased gene conversion or lower ancestral expression levels compared with recombining regions. The frequency of optimal codons rapidly decreased following recombination suppression and reached an asymptote after ca. 3 Ma. The strength of purifying selection remained virtually constant at dN/dS = 0.55, that is, at an intermediate level between purifying selection and neutral evolution. Accordingly, nonsynonymous differences between mating-type chromosomes increased linearly with stratum age, at a rate of 0.015 per My. We thus develop a method for disentangling effects of reduced selection efficacy from GC-biased gene conversion in the evolution of codon usage and we quantify the tempo of degeneration in nonrecombining regions, which is important for our knowledge on genomic evolution and on the maintenance of regions without recombination.


Assuntos
Cromossomos Fúngicos , Genes Fúngicos Tipo Acasalamento , Códon/genética , Evolução Molecular , Recombinação Genética , Cromossomos Sexuais
14.
J Evol Biol ; 35(12): 1619-1634, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35271741

RESUMO

Sex chromosomes and mating-type chromosomes can display large genomic regions without recombination. Recombination suppression often extended stepwise with time away from the sex- or mating-type-determining genes, generating evolutionary strata of differentiation between alternative sex or mating-type chromosomes. In anther-smut fungi of the Microbotryum genus, recombination suppression evolved repeatedly, linking the two mating-type loci and extended multiple times in regions distal to the mating-type genes. Here, we obtained high-quality genome assemblies of alternative mating types for four Microbotryum fungi. We found an additional event of independent chromosomal rearrangements bringing the two mating-type loci on the same chromosome followed by recombination suppression linking them. We also found, in a new clade analysed here, that recombination suppression between the two mating-type loci occurred in several steps, with first an ancestral recombination suppression between one of the mating-type locus and its centromere; later, completion of recombination suppression up to the second mating-type locus occurred independently in three species. The estimated dates of recombination suppression between the mating-type loci ranged from 0.15 to 3.58 million years ago. In total, this makes at least nine independent events of linkage between the mating-type loci across the Microbotryum genus. Several mating-type locus linkage events occurred through the same types of chromosomal rearrangements, where similar chromosome fissions at centromeres represent convergence in the genomic changes leading to the phenotypic convergence. These findings further highlight Microbotryum fungi as excellent models to study the evolution of recombination suppression.


Assuntos
Basidiomycota , Genes Fúngicos Tipo Acasalamento , Recombinação Genética , Evolução Molecular , Fungos/genética , Cromossomos Sexuais
15.
Genes (Basel) ; 12(7)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34356095

RESUMO

In heterothallic basidiomycete fungi, sexual compatibility is restricted by mating types, typically controlled by two loci: PR, encoding pheromone precursors and pheromone receptors, and HD, encoding two types of homeodomain transcription factors. We analysed the single mating-type locus of the commercial button mushroom variety, Agaricus bisporus var. bisporus, and of the related variety burnettii. We identified the location of the mating-type locus using genetic map and genome information, corresponding to the HD locus, the PR locus having lost its mating-type role. We found the mip1 and ß-fg genes flanking the HD genes as in several Agaricomycetes, two copies of the ß-fg gene, an additional HD2 copy in the reference genome of A. bisporus var. bisporus and an additional HD1 copy in the reference genome of A. bisporus var. burnettii. We detected a 140 kb-long inversion between mating types in an A. bisporus var. burnettii heterokaryon, trapping the HD genes, the mip1 gene and fragments of additional genes. The two varieties had islands of transposable elements at the mating-type locus, spanning 35 kb in the A. bisporus var. burnettii reference genome. Linkage analyses showed a region with low recombination in the mating-type locus region in the A. bisporus var. burnettii variety. We found high differentiation between ß-fg alleles in both varieties, indicating an ancient event of recombination suppression, followed more recently by a suppression of recombination at the mip1 gene through the inversion in A. bisporus var. burnettii and a suppression of recombination across whole chromosomes in A. bisporus var. bisporus, constituting stepwise recombination suppression as in many other mating-type chromosomes and sex chromosomes.


Assuntos
Agaricus/genética , Cromossomos/genética , Genes Fúngicos Tipo Acasalamento/genética , Agaricus/metabolismo , Alelos , Basidiomycota/genética , DNA Fúngico/genética , Ligação Genética/genética , Genoma Fúngico/genética , Recombinação Genética/genética
16.
Nat Commun ; 12(1): 3956, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172741

RESUMO

Among crop fruit trees, the apricot (Prunus armeniaca) provides an excellent model to study divergence and adaptation processes. Here, we obtain nearly 600 Armeniaca apricot genomes and four high-quality assemblies anchored on genetic maps. Chinese and European apricots form two differentiated gene pools with high genetic diversity, resulting from independent domestication events from distinct wild Central Asian populations, and with subsequent gene flow. A relatively low proportion of the genome is affected by selection. Different genomic regions show footprints of selection in European and Chinese cultivated apricots, despite convergent phenotypic traits, with predicted functions in both groups involved in the perennial life cycle, fruit quality and disease resistance. Selection footprints appear more abundant in European apricots, with a hotspot on chromosome 4, while admixture is more pervasive in Chinese cultivated apricots. Our study provides clues to the biology of selected traits and targets for fruit tree research and breeding.


Assuntos
Domesticação , Genoma de Planta/genética , Prunus armeniaca/genética , Cromossomos de Plantas/genética , Resistência à Doença/genética , Evolução Molecular , Frutas/classificação , Frutas/genética , Frutas/crescimento & desenvolvimento , Fluxo Gênico , Variação Genética , Estágios do Ciclo de Vida/genética , Metagenômica , Fenótipo , Filogenia , Prunus armeniaca/classificação , Prunus armeniaca/crescimento & desenvolvimento , Seleção Genética
17.
Int J Food Microbiol ; 354: 109174, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34103155

RESUMO

Studies of food microorganism domestication can provide important insight into adaptation mechanisms and lead to commercial applications. Penicillium roqueforti is a fungus with four genetically differentiated populations, two of which were independently domesticated for blue cheese-making, with the other two populations thriving in other environments. Most blue cheeses are made with strains from a single P. roqueforti population, whereas Roquefort cheeses are inoculated with strains from a second population. We made blue cheeses in accordance with the production specifications for Roquefort-type cheeses, inoculating each cheese with a single P. roqueforti strain, using a total of three strains from each of the four populations. We investigated differences between the cheeses made with the strains from the four P. roqueforti populations, in terms of the induced flora, the proportion of blue color, water activity and the identity and abundance of aqueous and organic metabolites as proxies for proteolysis and lipolysis as well as volatile compounds responsible for flavor and aroma. We found that the population-of-origin of the P. roqueforti strains used for inoculation had a minor impact on bacterial diversity and no effect on the abundance of the main microorganism. The cheeses produced with P. roqueforti strains from cheese populations had a higher percentage of blue area and a higher abundance of the volatile compounds typical of blue cheeses, such as methyl ketones and secondary alcohols. In particular, the Roquefort strains produced higher amounts of these aromatic compounds, partly due to more efficient proteolysis and lipolysis. The Roquefort strains also led to cheeses with a lower water availability, an important feature for preventing spoilage in blue cheeses, which is subject to controls for the sale of Roquefort cheese. The typical appearance and flavors of blue cheeses thus result from human selection on P. roqueforti, leading to the acquisition of specific features by the two cheese populations. These findings have important implications for our understanding of adaptation and domestication, and for cheese improvement.


Assuntos
Queijo , Microbiologia de Alimentos , Penicillium , Queijo/análise , Queijo/microbiologia , Aromatizantes , Humanos , Odorantes , Penicillium/metabolismo
18.
G3 (Bethesda) ; 11(8)2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-33974074

RESUMO

Melanins are pigments used by fungi to withstand various stresses and to strengthen vegetative and reproductive structures. In Sordariales fungi, their biosynthesis starts with a condensation step catalyzed by an evolutionary-conserved polyketide synthase. Here we show that complete inactivation of this enzyme in the model ascomycete Podospora anserina through targeted deletion of the PaPks1 gene results in reduced female fertility, in contrast to a previously analyzed nonsense mutation in the same gene that retains full fertility. We also show the utility of PaPks1 mutants for detecting rare genetic events in P. anserina, such as parasexuality and possible fertilization and/or apomixis of nuclei devoid of mating-type gene.


Assuntos
Proteínas Fúngicas/fisiologia , Melaninas/fisiologia , Podospora , Fertilidade/genética , Proteínas Fúngicas/genética , Melaninas/genética , Podospora/genética , Podospora/fisiologia
19.
Evolution ; 75(5): 978-988, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33870499

RESUMO

If there are no constraints on the process of speciation, then the number of species might be expected to match the number of available niches and this number might be indefinitely large. One possible constraint is the opportunity for allopatric divergence. In 1981, Felsenstein used a simple and elegant model to ask if there might also be genetic constraints. He showed that progress towards speciation could be described by the build-up of linkage disequilibrium among divergently selected loci and between these loci and those contributing to other forms of reproductive isolation. Therefore, speciation is opposed by recombination, because it tends to break down linkage disequilibria. Felsenstein then introduced a crucial distinction between "two-allele" models, which are subject to this effect, and "one-allele" models, which are free from the recombination constraint. These fundamentally important insights have been the foundation for both empirical and theoretical studies of speciation ever since.


Assuntos
Especiação Genética , Desequilíbrio de Ligação , Animais , Evolução Biológica , Modelos Teóricos , Recombinação Genética , Isolamento Reprodutivo
20.
Phytopathology ; 111(12): 2355-2366, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33829853

RESUMO

Many fungal plant pathogens encompass multiple populations specialized on different plant species. Understanding the factors underlying pathogen adaptation to their hosts is a major challenge of evolutionary microbiology, and it should help to prevent the emergence of new specialized pathogens on novel hosts. Previous studies have shown that French populations of the gray mold pathogen Botrytis cinerea parasitizing tomato and grapevine are differentiated from each other, and have higher aggressiveness on their host of origin than on other hosts, indicating some degree of host specialization in this polyphagous pathogen. Here, we aimed at identifying the genomic features underlying the specialization of B. cinerea populations to tomato and grapevine. Based on whole genome sequences of 32 isolates, we confirmed the subdivision of B. cinerea pathogens into two genetic clusters on grapevine and another, single cluster on tomato. Levels of genetic variation in the different clusters were similar, suggesting that the tomato-specific cluster has not recently emerged following a bottleneck. Using genome scans for selective sweeps and divergent selection, tests of positive selection based on polymorphism and divergence at synonymous and nonsynonymous sites, and analyses of presence and absence variation, we identified several candidate genes that represent possible determinants of host specialization in the tomato-associated population. This work deepens our understanding of the genomic changes underlying the specialization of fungal pathogen populations.


Assuntos
Botrytis , Solanum lycopersicum , Botrytis/genética , França , Genética Populacional , Solanum lycopersicum/microbiologia , Metagenômica , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA