Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nanoscale ; 16(12): 5941-5959, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38445855

RESUMO

Two-dimensional (2D) van der Waals (vdW) materials, including graphene, hexagonal boron nitride (hBN), and metal dichalcogenides (MCs), form the basis of modern electronics and optoelectronics due to their unique electronic structure, chemical activity, and mechanical strength. Despite many proof-of-concept demonstrations so far, to fully realize their large-scale practical applications, especially in devices, wafer-scale single crystal atomically thin highly uniform films are indispensable. In this minireview, we present an overview on the strategies and highlight recent significant advances toward the synthesis of wafer-scale single crystal graphene, hBN, and MC 2D thin films. Currently, there are five distinct routes to synthesize wafer-scale single crystal 2D vdW thin films: (i) nucleation-controlled growth by suppressing the nucleation density, (ii) unidirectional alignment of multiple epitaxial nuclei and their seamless coalescence, (iii) self-collimation of randomly oriented grains on a molten metal, (iv) surface diffusion and epitaxial self-planarization and (v) seed-mediated 2D vertical epitaxy. Finally, the challenges that need to be addressed in future studies have also been described.

2.
Chem Commun (Camb) ; 60(3): 265-279, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38087984

RESUMO

Two-dimensional (2D) materials, consisting of atomically thin layered crystals, have attracted tremendous interest due to their outstanding intrinsic properties and diverse applications in electronics, optoelectronics, and catalysis. The large-scale growth of high-quality ultrathin 2D films and their utilization in the facile fabrication of devices, easily adoptable in industrial applications, have been extensively sought after during the last decade; however, it remains a challenge to achieve these goals. Herein, we introduce three key concepts: (i) the microwave assisted quick (∼1 min) synthesis of wafer-scale (6-inch) anisotropic conducting ultrathin (∼1 nm) amorphous carbon and 2D semiconducting metal chalcogenide atomically thin films, (ii) a polymer-assisted deposition process for the synthesis of wafer-scale (6-inch) 2D metal chalcogenide and pyrolyzed carbon thin films, and (iii) the surface diffusion and epitaxial self-planarization induced synthesis of wafer-scale (2-inch) single crystal 2D binary and large-grain 2D ferromagnetic ternary metal chalcogenide thin films. The proposed synthesis concepts can pave a new way for the manufacture of wafer-scale high quality 2D ultrathin films and their utilization in the facile fabrication of devices.

3.
Chem Rev ; 123(7): 3329-3442, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36719999

RESUMO

The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.

4.
Nano Lett ; 21(22): 9772-9779, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34766778

RESUMO

Metal thin films with a specific orientation play vital roles in electronics, catalysts, and epitaxial templates. Although oriented metal films have been produced in the recent years, ultrathin oriented metal films (<10 nm) have not been achieved owing to the interfacial instability of the ultrathin films during the thermal annealing process. This study investigates chemical conversion of randomly oriented multigrain Au ultrathin films into (111)-oriented Au ultrathin films. A novel chemical process, termed pseudoequilibrium of etching and selective grain growth, is presented for the chemical conversion by using a quaternary ammonium halide. The reaction variables (reaction time, reaction temperature, species of halide ions) for the chemical conversion process are systematically investigated. This study reveals the in-plane rotational degeneracy in the Au(111) thin film epitaxially grown on a Si(111) substrate. The chemical process can be applied to a broad range of thicknesses from 9 to 100 nm.

5.
Adv Mater ; 33(45): e2103609, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34536038

RESUMO

Following the first experimental realization of intrinsic ferromagnetism in 2D van der Waals (vdW) crystals, several ternary metal chalcogenides with unprecedented long-range ferromagnetic order have been explored. However, the synthesis of large-area 2D ternary metal chalcogenide thin films is a great challenge, and a generalized synthesis has not been demonstrated yet. Here, a quick and scalable synthesis of epitaxially aligned ferromagnetic ternary metal chalcogenide thin films (Cr2 Ge2 Te6 , Cr2 Si2 Te6 , Mn3 Si2 Te6 ) is reported. The synthesis is based on the flux-controlled surface diffusion of Te on metal (Cr, Mn)-deposited wafer (Ge, Si) substrates. Magnetic anisotropy study of the epitaxial ternary thin films reveals the intrinsic magnetic easy axis; out-of-plane direction for Cr2 Ge2 Te6 and Cr2 Si2 Te6 , and in-plane direction for Mn3 Si2 Te6 . In addition to the synthesis, this work creates an opportunity for transfer-free device fabrication for realizing magnetoelectronics based on the electrical control of both charge and spin degrees of freedom in 2D ferromagnetic semiconductors.

6.
Adv Mater ; 33(35): e2102252, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34291519

RESUMO

Although wafer-scale single-grain thin films of 2D metal chalcogenides (MCs) have been extensively sought after during the last decade, the grain size of the MC thin films is still limited in the sub-millimeter scale. A general strategy of synthesizing wafer-scale single-grain MC thin films by using commercial wafers (Si, Ge, GaAs) both as metal source and epitaxial collimator is presented. A new mechanism of single-grain thin-film formation, surface diffusion, and epitaxial self-planarization is proposed, where chalcogen elements migrate preferentially along substrate surface and the epitaxial crystal domains flow to form an atomically smooth thin film. Through synchrotron X-ray diffraction and high-resolution scanning transmission electron microscopy, the formation of single-grain Si2 Te3 , GeTe, GeSe, and GaTe thin films on (111) Si, Ge, and (100) GaAs is verified. The Si2 Te3 thin film is used to achieve transfer-free fabrication of a high-performance bipolar memristive electrical-switching device.

7.
ACS Appl Mater Interfaces ; 13(23): 26870-26878, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34085807

RESUMO

Full advantage of stretchable electronic devices can be taken when utilizing an intrinsically stretchable power source. High-performance stretchable supercapacitors with a simple structure and solid-state operation are good power sources for stretchable electronics. This study suggests a new type of intrinsically stretchable, printable, electroactive ink consisting of 1T-MoS2 and a fluoroelastomer (FE). The active material (1T-MoS2/FE) is made by fluorinating the metallic-phase MoS2 (1T-MoS2) nanosheets with the FE under high-power ultrasonication. The MoS2 in the 1T-MoS2/FE has unconventional crystal structures in which the stable cubic (1T) and distorted 2H structures were mixed. The printed line of the 1T-MoS2/FE on the porous stretchable Au collector electrodes is intrinsically stretchable at more than ε = 50% and has good specific capacitance (28 mF cm-2 at 0.2 mA cm-2) and energy density (3.15 mWh cm-3). The in-plane all-solid-state stretchable supercapacitor is stretchable at ε = 40% and retains its relative capacity (C/Co) by 80%. This printable device platform potentially opens up the in-plane fabrication of stretchable micro-supercapacitor devices for wearable electronic applications.

8.
Nat Mater ; 20(4): 533-540, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33398123

RESUMO

Conductive and stretchable electrodes that can be printed directly on a stretchable substrate have drawn extensive attention for wearable electronics and electronic skins. Printable inks that contain liquid metal are strong candidates for these applications, but the insulating oxide skin that forms around the liquid metal particles limits their conductivity. This study reveals that hydrogen doping introduced by ultrasonication in the presence of aliphatic polymers makes the oxide skin highly conductive and deformable. X-ray photoelectron spectroscopy and atom probe tomography confirmed the hydrogen doping, and first-principles calculations were used to rationalize the obtained conductivity. The printed circuit lines show a metallic conductivity (25,000 S cm-1), excellent electromechanical decoupling at a 500% uniaxial stretching, mechanical resistance to scratches and long-term stability in wide ranges of temperature and humidity. The self-passivation of the printed lines allows the direct printing of three-dimensional circuit lines and double-layer planar coils that are used as stretchable inductive strain sensors.

9.
ACS Nano ; 13(6): 7175-7184, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31149801

RESUMO

With the advent of foldable electronics, it is necessary to develop a technology ensuring foldability when the circuit lines are placed on the topmost substrate rather than in the neutral plane used in the present industry. Considering the potential technological impacts, conversion of the conventional printed circuit boards to foldable ones is most desirable to achieve the topmost circuitry. This study realizes this unconventional conversion concept by coating an ultrathin anisotropic conductive film (UACF) on a printed metal circuit board. This study presents rapid large-area synthesis of hydrogenated amorphous carbon (a-C:H) thin films and their use as the UACF. Since the synthesized a-C:H thin film has electrical transparency, the metal/a-C:H hybrid board reflects the complexity of the underlying metal circuit board. The a-C:H thin film electrically connects the cracked area of the metal line; thus, the hybrid circuit board is foldable without resistance change during repeated folding cycles. The metal/UACF hybrid circuit board can be applied to the fabrication of various foldable electronic devices.

10.
J Mass Spectrom ; 54(2): 148-157, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30536759

RESUMO

Comprehensive two-dimensional gas chromatography (GC × GC) coupled to time-of-flight mass spectrometry is a powerful separation tool for complex petroleum product analysis. However, the most commonly used electron ionization (EI) technique often makes the identification of the majority of hydrocarbons impossible due to the exhaustive fragmentation and lack of molecular ion preservation, prompting the need of soft-ionization energies. In this study, three different soft-ionization techniques including photo ionization (PI), chemical ionization (CI), and field ionization (FI) were compared against EI to elucidate their relative capabilities to reveal different base oil hydrocarbon classes. Compared with EI (70 eV), PI (10.8 eV) retained significant molecular ion (M+· ) information for a large number of isomeric species including branched-alkanes and saturated monocyclic hydrocarbons along with unique fragmentation patterns. However, for bicyclic/polycyclic naphthenic and aromatic compounds, EI played upper hand by retaining molecular as well as fragment ions to identify the species, whereas PI exhibited mainly molecular ion signals. On the other hand, CI revealed selectivity towards different base oil groups, particularly for steranes, sulfur-containing thiophenes, and esters, yielding protonated molecular ions (M + H)+ for unsaturated and hydride abstracted ions (M-H+ ) for saturated hydrocarbons. FI, as expected, generated intact molecular ions (M+· ) irrespective to the base oil chemical classes. It allowed elemental composition by TOFMS with a mass resolving power up to 8000 (FWHM) and a mass accuracy of 1 mDa, leading to the calculation of heteroatomic content, double bond equivalency, and carbon number of the compounds. The qualitative and quantitative results presented herein offer a unique perspective into the detailed comparison of different ionization techniques corresponding to several hydrocarbon classes.

11.
J Chromatogr Sci ; 56(9): 858-866, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29878072

RESUMO

The application of thyreostats in livestock has been banned in the European Union since 1981, but these drugs are currently in the focus due to the natural occurrence of thiouracil (TU). Studies have been published on TU contamination in urine samples of animal and human origins without any drug administration of it. This paper presents new analytical methods to analyze thyreostats to support the legislation on the recommended concentration (RC) levels of these drugs. Both screening and confirmatory methods are developed for analyzing thyreostats in porcine and bovine urines using a liquid chromatography-tandem mass spectrometry technique. The new methods include a chemical derivatization with 3-iodobenzyl bromide, followed by novel purification approaches using supported liquid extraction and mixed-mode cation-exchange solid-phase extraction (SPE) for screening and confirmatory purposes, respectively. The optimized derivatization in combination with the cation-exchange SPE gives high sensitivity and reducing matrix effect of the analysis. The methods are validated in accordance with the guidelines for the validation of screening methods and European Commission Decision 2002/657/EC. The confirmatory method is used in the national monitoring plan. The detected levels of TU in urine samples are below the currently applicable RC level (10 µg L-1).


Assuntos
Antitireóideos/urina , Extração Líquido-Líquido/métodos , Extração em Fase Sólida/métodos , Animais , Bovinos , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção , Metimazol/urina , Reprodutibilidade dos Testes , Suínos , Espectrometria de Massas em Tandem/métodos , Tiouracila/urina
12.
Adv Mater ; 30(25): e1707577, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29687479

RESUMO

2D metal chalcogenide thin films have recently attracted considerable attention owing to their unique physicochemical properties and great potential in a variety of applications. Synthesis of large-area 2D metal chalcogenide thin films in controllable ways remains a key challenge in this research field. Recently, the solution-based synthesis of 2D metal chalcogenide thin films has emerged as an alternative approach to vacuum-based synthesis because it is relatively simple and easy to scale up for high-throughput production. In addition, solution-based thin films open new opportunities that cannot be achieved from vacuum-based thin films. Here, a comprehensive summary regarding the basic structures and properties of different types of 2D metal chalcogenides, the mechanistic details of the chemical reactions in the synthesis of the metal chalcogenide thin films, recent successes in the synthesis by different reaction approaches, and the applications and potential uses is provided. In the last perspective section, the technical challenges to be overcome and the future research directions in the solution-based synthesis of 2D metal chalcogenides are discussed.

13.
Artigo em Inglês | MEDLINE | ID: mdl-28885099

RESUMO

For the implementation of Regulation (EC) No 2065/2003 related to smoke flavourings used or intended for use in or on foods a method based on solid-phase micro extraction (SPME) GC/MS was developed for the characterisation of liquid smoke products. A statistically based experimental design (DoE) was used for method optimisation. The best general conditions to quantitatively analyse the liquid smoke compounds were obtained with a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre, 60°C extraction temperature, 30 min extraction time, 250°C desorption temperature, 180 s desorption time, 15 s agitation time, and 250 rpm agitation speed. Under the optimised conditions, 119 wood pyrolysis products including furan/pyran derivatives, phenols, guaiacol, syringol, benzenediol, and their derivatives, cyclic ketones, and several other heterocyclic compounds were identified. The proposed method was repeatable (RSD% <5) and the calibration functions were linear for all compounds under study. Nine isotopically labelled internal standards were used for improving quantification of analytes by compensating matrix effects that might affect headspace equilibrium and extractability of compounds. The optimised isotope dilution SPME-GC/MS based analytical method proved to be fit for purpose, allowing the rapid identification and quantification of volatile compounds in liquid smoke flavourings.


Assuntos
Aromatizantes/análise , Análise de Alimentos , Técnicas de Diluição do Indicador , Projetos de Pesquisa , Fumaça/análise , Microextração em Fase Sólida , Contaminação de Alimentos/análise , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Isótopos
14.
Food Control ; 77: 65-75, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28674464

RESUMO

Fatty acid esters of 2- and 3-chloropropanediol (MCPDEs) and fatty acid esters of glycidol (GEs) are commonly monitored in edible fats and oils. A recommendation issued by the European Commission emphasizes the need of generating data on the occurrence of these substances in a broad range of different foods. So far, analytical methods for the determination of MCPDEs and GEs are fully validated only for oils, fats and margarine. This manuscript presents the assessment of critical steps in the AOCS Cd 29a-13 method for the simultaneous determination of MCPDEs and GEs in the fat phase obtained from bakery and potato products, smoked and fried fish and meat, and other cereal products. The trueness of the method is affected by the additional formation of 3-MBPD esters from monoacylglycerols (MAGs), which are frequently present in food. The overestimation of GE contents for some samples was confirmed by the comparison of results with results obtained by an independent analytical method (direct analysis of GE by HPLC-MS/MS). An additional sample pre-treatment by SPE was introduced to remove MAGs from fat prior to the GEs conversion, while the overall method sensitivity was not significantly affected. Trueness of the determination of GEs by the modified analytical procedure was confirmed by comparison with a direct analysis of GEs. The potential impact on accuracy of results of the final sample preparation step of the analytical procedure, the derivatization of free forms MCPD and MBPD with PBA, was evaluated as well. Different commercial batches of PBA showed differences in solubility in a non-polar organic solvent. The PBA derivatization in organic solvent did not affect precision and trueness of the method due to the isotopic standard dilution. However, method sensitivity might be significantly compromised.

15.
Adv Mater ; 29(26)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28437015

RESUMO

Ultrathin transition metal dichalcogenides (TMDs) have exotic electronic properties. With success in easy synthesis of high quality TMD thin films, the potential applications will become more viable in electronics, optics, energy storage, and catalysis. Synthesis of TMD thin films has been mostly performed in vacuum or by thermolysis. So far, there is no solution phase synthesis to produce large-area thin films directly on target substrates. Here, this paper reports a one-step quick synthesis (within 45-90 s) of TMD thin films (MoS2 , WS2 , MoSe2 , WSe2 , etc.) on solid substrates by using microwave irradiation on a precursor-containing electrolyte solution. The numbers of the quintuple layers of the TMD thin films are precisely controllable by varying the precursor's concentration in the electrolyte solution. A photodetector made of MoS2 thin film comprising of small size grains shows near-IR absorption, supported by the first principle calculation, exhibits a high photoresponsivity (>300 mA W-1 ) and a fast response (124 µs). This study paves a robust way for the synthesis of various TMD thin films in solution phases.

16.
Anal Chem ; 89(10): 5395-5403, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28410443

RESUMO

The characterization of organic mixtures by comprehensive two-dimensional gas chromatography (GC×GC) coupled to electron impact (EI) ionization time-of-flight mass spectrometry (TOF-MS) allows the detection of thousands of compounds. However, owing to the exhaustive fragmentation following EI ionization, despite the use of mass spectral libraries, a majority of the compounds remains unidentified because of the lack of parent ion preservation. Thus, soft-ionization energies leading to organic compounds being ionized with limited or no fragmentation, retaining the molecular ion, has been of interest for many years. In this study, photoionization (PI) was evaluated as the ion source for GC×GC-TOF-MS measurements. First, capabilities and limitations of PI were tested using an authentic mixture of compounds of several chemical classes. Ionization energy exhibited by PI, equivalent to 10.8 eV, resulted in significant retention of molecular ion information; [M]+• for alkanes, ketones, FAMEs, aromatics, [M-H]+• for chloroalkanes, and [M-H2O]+• for alcohols. Second, considering the potential of PI for hydrocarbons, base oils, complex mixtures of saturated and unsaturated hydrocarbons blended for finished lubricant formulations, were extensively evaluated. Several chemical classes of hydrocarbons were positively identified including a large number of isomeric compounds, both aliphatics and cyclics. Interestingly, branched-alkanes were ionized with lower excess internal energy, not only retaining the molecular ions but also exhibiting unique fragmentation patterns. The results presented herein offer a unique perspective into the detailed molecular characterization of base oils. Such unprecedented identification power of PI coupled with GC×GC-TOF-MS is the first report covering volatiles to low-volatile organic mixtures.

17.
J Biomed Mater Res A ; 105(5): 1299-1310, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28076888

RESUMO

Hidden effects of nano-materials to induced autophagy, a lysosomal degradative pathway, remain an exciting topic, in the level of material-protein interaction and subsequent cellular signaling features. Here, our studies show that surface modified hausmannite nanoparticles (Mn3 O4 NPs) can uniformly cleave/splice Beclin-1 protein and alter cellular mechanism on the emphasis of tuning autophagy and subsequently promote enhancement of apoptosis. Details investigation of Beclin-1 dependency and its uniform cleavage/splice pattern by surface modified Mn3 O4 NPs, shows tuning of cellular mechanism on emphasis of caspase mediated autophagy tuning. Our findings will also clarify the conflict between apoptosis-autophagy on the basis of its unique property derived from surface chemistry modulation, in context of Beclin-1 eminent cleavage/splice which remarks novel effect of Beclin-1 dependent tuning of autophagosomes formation and switch to enhance apoptotic index, mediates by PI3KC3 cleavage and caspase activation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1299-1310, 2017.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína Beclina-1 , Caspases/metabolismo , Materiais Revestidos Biocompatíveis , Nanopartículas/química , Proteína Beclina-1/química , Proteína Beclina-1/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Células HeLa , Humanos , Compostos de Manganês , Óxidos
18.
J Chromatogr A ; 1466: 136-47, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27623063

RESUMO

Fatty acid esters of 3-monochloro-1,2-propanediol (3-MCPDEs), of 2-monochloro-1,3-propanediol (2-MCPDEs) and of 2,3-epoxy-1-propanol or glycidol (GEs), which are considered to be deleterious to human health, may occur in a broad variety of food samples. A proper risk assessment of those substances requires the availability of robust occurrence data; in this respect concerns have been raised regarding the reliability of results obtained with the currently available methods to determine those substances in processed food. This article presents an indirect analytical procedure for the simultaneous determination of 3-MCPDEs, 2-MCPDEs and GEs in a wide variety of food products after extraction by pressurised liquid extraction (PLE) and determination by gas chromatography mass-spectrometry (GC-MS). For the differentiation of MCPDEs and GEs, the latter were first converted to monobromopropanediol esters (MBPDEs) in acid aqueous solution of sodium bromide. MCPDEs and MBPDEs were then hydrolysed under acidic conditions followed by derivatisation of the released free (non-esterified) form in ethyl acetate with phenyl boronic acid (PBA). Quantification of the analytes was carried out using the isotopic labelled analogues of both MCPDEs and GEs. Limits of detection (LODs) and limits of quantitation (LOQs) were in the range of 7-17mgkg(-1) and 13-31mgkg(-1) respectively, while the working range of the method was between LOQ and 1850mgkg(-1) expressed on fat basis. The developed method was successfully applied for the analysis of the target compounds in more than 650 different food samples covering the following commodities: bread and rolls, fine bakery wares, smoked fish products, fried and roasted meat, potato based snacks and fried potato products, cereal-based snacks and margarines.


Assuntos
Ésteres/análise , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Glicerol/análogos & derivados , Animais , Ácidos Graxos/análise , Produtos Pesqueiros/análise , Cromatografia Gasosa-Espectrometria de Massas , Glicerol/análise , Limite de Detecção , Carne/análise , Reprodutibilidade dos Testes
19.
Anal Chem ; 88(12): 6500-8, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27173877

RESUMO

Fast market penetration of electronic cigarettes is leading to an exponentially growing number of electronic refill liquids with different nicotine contents and an endless list of flavors. Therefore, rapid and simple methods allowing a fast screening of these products are necessary to detect harmful substances which can negatively impact the health of consumers. In this regard, the present work explores the capabilities of differential ion mobility spectrometry coupled to tandem mass spectrometry for high-throughput analysis of nicotine and 11 related compounds in commercial refill liquids for electronic cigarettes. The influence of main factors affecting the ion mobility separation, such as modifier types and concentration, separation voltage, and temperature, was systematically investigated. Despite small molecular weight differences among the studied compounds, a good separation was achieved in the ion mobility cell under the optimized conditions, which involved the use of ethanol as a polar gas-phase chemical modifier. Indeed, differential ion mobility was able to resolve (resolution >4) nicotine from its structural isomer anabasine without the use of any chromatographic separation. The quantitative performance of the proposed method was then evaluated, showing satisfactory precision (RSD ≤ 16%) and recoveries ranging from 85 to 100% for nicotine, and from 84 to 126% for the rest of the target analytes. Several commercial electronic cigarette refill liquids were analyzed to demonstrate the applicability of the method. In some cases, significant differences were found between labeled and measured levels of nicotine. Anatabine, cotinine, myosmine, and nornicotine were also found in some of the analyzed samples.

20.
ACS Nano ; 9(7): 6843-53, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26134746

RESUMO

We herein demonstrate the successive epitaxial growth of Bi2Te3 and Bi2Se3 on seed nanoplates for the scalable synthesis of heterostructured nanoplates (Bi2Se3@Bi2Te3) and multishell nanoplates (Bi2Se3@Bi2Te3@Bi2Se3, Bi2Se3@Bi2Te3@Bi2Se3@Bi2Te3). The relative dimensions of the constituting layers are controllable via the molar ratios of the precursors added to the seed nanoplate solution. Reduction of the precursors produces nanoparticles that attach preferentially to the sides of the seed nanoplates. Once attached, the nanoparticles reorganize epitaxially on the seed crystal lattices to form single-crystalline core-shell nanoplates. The nanoplates, initially 100 nm wide, grew laterally to 620 nm in the multishell structure, while their thickness increased more moderately, from 5 to 20 nm. The nanoplates were pelletized into bulk samples by spark plasma sintering and their thermoelectric properties are compared. A peak thermoelectric figure of merit (ZT) ∼0.71 was obtained at 450 K for the bulk of Bi2Se3@Bi2Te3 nanoplates by simultaneous modulation of electronic and thermal transport in the presence of highly dense grain and phase boundaries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA