Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(37): 9493-9501, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39255459

RESUMO

Investigations of entangled and classical two-photon absorption have been carried out for six donor (D)-acceptor (A)-donor (D) compounds containing the dithieno pyrrole (DTP) unit as donor and acceptors with systematically varied electronic properties. Comparing ETPA (quantum) and TPA (classical) results reveals that the ETPA cross section decreases with increasing TPA cross section for molecules with highly off-resonant excited states for single-photon excitation. Theory (TDDFT) results are in semiquantitative agreement with this anticorrelated behavior due to the dependence of the ETPA cross section but not TPA on the two-photon excited state lifetime. The largest cross section is found for a DTP derivative that has a single photon excitation energy closest to resonance with half the two-photon excitation energy. These results are important for the possible use of quantum light for low-intensity energy-conversion applications.

2.
J Chem Phys ; 161(4)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39041878

RESUMO

In this study, we investigate second- and third-harmonic generation processes in Au nanorod systems using the real-time time-dependent density functional tight binding method. Our study focuses on the computation of nonlinear signals based on the time dependent dipole response induced by linearly polarized laser pulses interacting with nanoparticles. We systematically explore the influence of various laser parameters, including pump intensity, duration, frequency, and polarization directions, on harmonic generation. We demonstrate all the results using Au nanorod dimer systems arranged in end-to-end configurations, and disrupting the spatial symmetry of regular single nanorod systems is crucial for second-harmonic generation processes. Furthermore, we study the impact of nanorod lengths, which lead to variable plasmon energies, on harmonic generation, and estimates of polarizabilities and hyper-polarizabilities are provided.

3.
Proc Natl Acad Sci U S A ; 120(35): e2307719120, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603737

RESUMO

Multiphoton absorption of entangled photons offers ways for obtaining unique information about chemical and biological processes. Measurements with entangled photons may enable sensing biological signatures with high selectivity and at very low light levels to protect against photodamage. In this paper, we present a theoretical and experimental study of the excitation wavelength dependence of the entangled two-photon absorption (ETPA) process in a molecular system, which provides insights into how entanglement affects molecular spectra. We demonstrate that the ETPA excitation spectrum can be different from that of classical TPA as well as that for one-photon resonant absorption (OPA) with photons of doubled frequency. These results are modeled by assuming the ETPA cross-section is governed by a two-photon excited state radiative linewidth rather than by electron-phonon interactions, and this leads to excitation spectra that match the observed results. Further, we find that the two-photon-allowed states with highest TPA and ETPA intensities have high electronic entanglements, with ETPA especially favoring states with the longest radiative lifetimes. These results provide concepts for the development of quantum light-based spectroscopy and microscopy that will lead to much higher efficiency of ETPA sensors and low-intensity detection schemes.

4.
J Phys Chem Lett ; 13(43): 10140-10146, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36270000

RESUMO

We report how the unique temporal and spectral features of pulsed entangled photons from a parametric downconversion source can be utilized for manipulating electronic excitations through the optimization of their spectral phase. A new comprehensive optimization protocol based on Bayesian optimization has been developed in this work to selectively excite electronic states accessible by two-photon absorption. Using our optimization method, the entangled two-photon absorption probability for a thiophene dendrimer can be enhanced by up to a factor of 20, while classical light turns out to be nonoptimizable. Moreover, the optimization involving photon entanglement enables selective excitation that would not be possible otherwise. In addition to optimization, we have explored entangled two-photon absorption in the small entanglement time limit showing that entangled light can excite molecular electronic states that are vanishingly small for classical light. We demonstrate these opportunities with an application to a thiophene dendrimer.

5.
Phys Rev E ; 106(2-1): 024131, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36109996

RESUMO

External driving of bath temperatures with a phase difference of a nonequilibrium quantum engine leads to the emergence of geometric effects on the thermodynamics. In this work we modulate the amplitude of the external driving protocols by introducing envelope functions and study the role of geometric effects on the flux, noise, and efficiency of a four-level driven quantum heat engine coupled with two thermal baths and a unimodal cavity. We observe that having a finite width of the modulation envelope introduces an additional control knob for studying the thermodynamics in the adiabatic limit. The optimization of the flux as well as the noise with respect to thermally induced quantum coherences becomes possible in the presence of geometric effects, which hitherto has not been possible with sinusoidal driving without an envelope. We also report the deviation of the slope and generation of an intercept in the standard expression for efficiency at maximum power as a function of Carnot efficiency in the presence of geometric effects under the amplitude modulation. Further, a recently developed universal bound on the efficiency obtained from the thermodynamic uncertainty relation is shown not to hold when a small width of the modulation envelope along with a large value of cavity temperature is maintained.

6.
Faraday Discuss ; 228(0): 502-518, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33570529

RESUMO

We have constructed deep neural networks, which can map fluctuating photo-electron spectra obtained from noisy pulses to spectra from noise-free pulses. The network is trained on spectra from noisy pulses in combination with random Hamilton matrices, representing systems which could exist but do not necessarily exist. In [Giri et al., Phys. Rev. Lett., 2020, 124, 113201] we performed a purification of fluctuating spectra, that is, mapping them to those from Fourier-limited Gaussian pulses. Here, we investigate the performance of such neural-network-based maps for predicting spectra of double pulses, pulses with a chirp and even partially-coherent pulses from fluctuating spectra generated by noisy pulses. Secondly, we demonstrate that along with purification of a fluctuating double-pulse spectrum, one can estimate the time-delay of the underlying double pulse, an attractive feature for single-shot spectra from SASE FELs. We demonstrate our approach with resonant two-photon ionization, a non-linear process, sensitive to details of the laser pulse.

7.
Phys Rev E ; 99(2-1): 022104, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30934252

RESUMO

We propose a machine-learning approach based on artificial neural network to efficiently obtain new insights on the role of geometric contributions to the nonequilibrium fluctuations of an adiabatically temperature-driven quantum heat engine coupled to a cavity. Using the artificial neural network we have explored the interplay between bunched and antibunched photon exchange statistics for different engine parameters. We report that beyond a pivotal cavity temperature, the Fano factor oscillates between giant and low values as a function of phase difference between the driving protocols. We further observe that the standard thermodynamic uncertainty relation is not valid when there are finite geometric contributions to the fluctuations but holds true for zero phase difference even in the presence of coherences.

8.
Phys Rev Lett ; 121(15): 153203, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30362781

RESUMO

We demonstrate that, by changing the direction of the chirp in vacuum-ultraviolet pulses, one can switch between excitation and ionization with very high contrast, if the carrier frequency of the light is resonant with two bound states. This is a surprising consequence of rapid adiabatic passage if extended to include transitions to the continuum. The chirp phase locks the linear combination of the two resonantly coupled bound states whose ionization amplitudes interfere constructively or destructively depending on the chirp direction under suitable conditions. We derive the phenomenon in a minimal model and verify the effect with calculations for helium as a realistic example.

9.
Phys Rev E ; 96(5-1): 052129, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29347686

RESUMO

By periodically driving the temperature of reservoirs in a quantum heat engine, geometric or Pancharatnam-Berry phaselike (PBp) effects in the thermodynamics can be observed. The PBp can be identified from a generating function (GF) method within an adiabatic quantum Markovian master equation formalism. The GF is shown not to lead to a standard open quantum system's fluctuation theorem in the presence of phase-different modulations with an inapplicability in the use of large deviation theory. Effect of quantum coherences in optimizing the flux is nullified due to PBp contributions. The linear coefficient, 1/2, which is universal in the expansion of the efficiency at maximum power in terms of Carnot efficiency no longer holds true in the presence of PBp effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA