Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
RSC Med Chem ; 15(7): 2422-2439, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39026652

RESUMO

In Mycobacterium tuberculosis (Mtb) and Plasmodium falciparum (Pf), the methylerythritol phosphate (MEP) pathway is responsible for isoprene synthesis. This pathway and its products are vital to bacterial/parasitic metabolism and survival, and represent an attractive set of drug targets due to their essentiality in these pathogens but absence in humans. The second step in the MEP pathway is the conversion of 1-deoxy-d-xylulose-5-phosphate (DXP) to MEP and is catalyzed by 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR). Natural products fosmidomycin and FR900098 inhibit DXR, but are too polar to reach the desired target inside some cells, such as Mtb. Synthesized FR900098 analogs with lipophilic substitution in the position α to the phosphorous atom showed promise, resulting in increased activity against Mtb and Pf. Here, an α substitution, consisting of a 3,4-dichlorophenyl substituent, in combination with various O-linked alkylaryl substituents on the hydroxamate moiety is utilized in the synthesis of a novel series of FR900098 analogs. The purpose of the O-linked alkylaryl substituents is to further enhance DXR inhibition by extending the structure into the adjacent NADPH binding pocket, blocking the binding of both DXP and NADPH. Of the initial O-linked alkylaryl substituted analogs, compound 6e showed most potent activity against Pf parasites at 3.60 µM. Additional compounds varying the phenyl ring of 6e were synthesized. The most potent phosphonic acids, 6l and 6n, display nM activity against PfDXR and low µM activity against Pf parasites. Prodrugs of these compounds were less effective against Pf parasites but showed modest activity against Mtb cells. Data from this series of compounds suggests that this combination of substituents can be advantageous in designing a new generation of antimicrobials.

2.
ACS Infect Dis ; 9(7): 1387-1395, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37310810

RESUMO

Malaria, a mosquito-borne disease caused by several parasites of the Plasmodium genus, remains a huge threat to global public health. There are an estimated 0.5 million malaria deaths each year, mostly among African children. Unlike humans, Plasmodium parasites and a number of important pathogenic bacteria employ the methyl erythritol phosphate (MEP) pathway for isoprenoid synthesis. Thus, the MEP pathway represents a promising set of drug targets for antimalarial and antibacterial compounds. Here, we present new unsaturated MEPicide inhibitors of 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), the second enzyme of the MEP pathway. A number of these compounds have demonstrated robust inhibition of Plasmodium falciparum DXR, potent antiparasitic activity, and low cytotoxicity against HepG2 cells. Parasites treated with active compounds are rescued by isopentenyl pyrophosphate, the product of the MEP pathway. With higher levels of DXR substrate, parasites acquire resistance to active compounds. These results further confirm the on-target inhibition of DXR in parasites by the inhibitors. Stability in mouse liver microsomes is high for the phosphonate salts, but remains a challenge for the prodrugs. Taken together, the potent activity and on-target mechanism of action of this series further validate DXR as an antimalarial drug target and the α,ß-unsaturation moiety as an important structural component.


Assuntos
Antimaláricos , Fosfomicina , Criança , Humanos , Animais , Camundongos , Plasmodium falciparum , Fosfomicina/farmacologia , Fosfomicina/química , Pentosefosfatos/metabolismo , Antimaláricos/farmacologia , Antimaláricos/química
3.
ACS Omega ; 6(42): 27630-27639, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34722963

RESUMO

Malaria is a global health threat that requires immediate attention. Malaria is caused by the protozoan parasite Plasmodium, the most severe form of which is Plasmodium falciparum. The methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis is essential to the survival of many human pathogens, including P. falciparum, but is absent in humans, and thus shows promise as a new antimalarial drug target. The enzyme 1-deoxy-d-xylulose 5-phosphate reductoisomerase (IspC) catalyzes the first committed step in the MEP pathway. In addition to a divalent cation (Mg2+), the enzyme requires the substrates 1-deoxy-D-xylulose 5-phosphate (DXP) and NADPH to catalyze its reaction. We designed N-alkoxy and N-acyl fosmidomycin analogs to inhibit the activity of P. falciparum IspC in a bisubstrate manner. Enzyme assays reveal that the N-alkoxy fosmidomycin analogs have a competitive mode of inhibition relative to both the DXP- and NADPH-binding sites, confirming a bisubstrate mode of inhibition. In contrast, the N-acyl fosmidomycin analogs demonstrate competitive inhibition with respect to DXP but uncompetitive inhibition with respect to NADPH, indicating monosubstrate inhibitory activity. Our results will have a positive impact on the discovery of novel antimalarial drugs.

4.
ACS Infect Dis ; 7(11): 2987-2998, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34672535

RESUMO

The ESKAPE pathogens comprise a group of multidrug-resistant bacteria that are the leading cause of nosocomial infections worldwide. The prevalence of antibiotic resistant strains and the relative ease by which bacteria acquire resistance genes highlight the continual need for the development of novel antibiotics against new drug targets. The methylerythritol phosphate (MEP) pathway is an attractive target for the development of new antibiotics. The MEP pathway governs the synthesis of isoprenoids, which are key lipid precursors for vital cell components such as ubiquinone and bacterial hopanoids. Additionally, the MEP pathway is entirely distinct from the corresponding mammalian pathway, the mevalonic acid (MVA) pathway, making the first committed enzyme of the MEP pathway, 1-deoxy-d-xylulose 5-phosphate reductoisomerase (IspC), an attractive target for antibiotic development. To facilitate drug development against two of the ESKAPE pathogens, Acinetobacter baumannii and Klebsiella pneumoniae, we cloned, expressed, purified, and characterized IspC from these two Gram-negative bacteria. Enzyme inhibition assays using IspC from these two pathogens, and compounds fosmidomycin and FR900098, indicate IC50 values ranging from 19.5-45.5 nM. Antimicrobial susceptibility tests with these inhibitors reveal that A. baumannii is susceptible to FR900098, whereas K. pneumoniae is susceptible to both compounds. Finally, to facilitate structure-based drug design of inhibitors targeting A. baumannii IspC, we determined the 2.5 Å crystal structure of IspC from A. baumannii in complex with inhibitor FR900098, and cofactors NADPH and magnesium.


Assuntos
Acinetobacter baumannii , Aldose-Cetose Isomerases , Preparações Farmacêuticas , Acinetobacter baumannii/genética , Aldose-Cetose Isomerases/genética , Klebsiella pneumoniae/genética
5.
ACS Omega ; 5(10): 5170-5175, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32201804

RESUMO

Fosmidomycin inhibits IspC (1-deoxy-d-xylulose 5-phosphate reductoisomerase), the first committed enzyme in the methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis. The MEP pathway of isoprenoid biosynthesis is essential to the causative agent of the plague, Yersinia pestis, and is entirely distinct from the corresponding mammalian pathway. To further drug development, we established structure-activity relationships of fosmidomycin analogues by assessing a suite of 17 α-phenyl-substituted reverse derivatives of fosmidomycin against Y. pestis IspC. Several of these compounds showed increased potency over fosmidomycin with IC50 values in the nanomolar range. Additionally, we performed antimicrobial susceptibility testing with Y. pestis A1122 (YpA1122). The bacteria were susceptible to several compounds with minimal inhibitory concentration (MIC) values ranging from 128 to 512 µg/mL; a correlation between the IC50 and MIC values was observed.

6.
J Med Chem ; 61(19): 8847-8858, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30192536

RESUMO

Severe malaria due to Plasmodium falciparum remains a significant global health threat. DXR, the second enzyme in the MEP pathway, plays an important role to synthesize building blocks for isoprenoids. This enzyme is a promising drug target for malaria due to its essentiality as well as its absence in humans. In this study, we designed and synthesized a series of α,ß-unsaturated analogues of fosmidomycin, a natural product that inhibits DXR in P. falciparum. All compounds were evaluated as inhibitors of P. falciparum. The most promising compound, 18a, displays on-target, potent inhibition against the growth of P. falciparum (IC50 = 13 nM) without significant inhibition of HepG2 cells (IC50 > 50 µM). 18a was also tested in a luciferase-based Plasmodium berghei mouse model of malaria and showed exceptional in vivo efficacy. Together, the data support MEPicide 18a as a novel, potent, and promising drug candidate for the treatment of malaria.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Antimaláricos/farmacologia , Fosfomicina/análogos & derivados , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/crescimento & desenvolvimento , Pró-Fármacos/farmacologia , Animais , Antimaláricos/química , Feminino , Fosfomicina/química , Fosfomicina/farmacologia , Malária Falciparum/enzimologia , Malária Falciparum/parasitologia , Camundongos , Plasmodium falciparum/efeitos dos fármacos , Pró-Fármacos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA