Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Nat Commun ; 15(1): 2543, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514654

RESUMO

Accumulating evidence points to dysregulations of the Nucleus Accumbens (NAc) in eating disorders (ED), however its precise contribution to ED symptomatic dimensions remains unclear. Using chemogenetic manipulations in male mice, we found that activity of dopamine D1 receptor-expressing neurons of the NAc core subregion facilitated effort for a food reward as well as voluntary exercise, but decreased food intake, while D2-expressing neurons have opposite effects. These effects are congruent with D2-neurons being more active than D1-neurons during feeding while it is the opposite during running. Chronic manipulations of each subpopulations had limited effects on energy balance. However, repeated activation of D1-neurons combined with inhibition of D2-neurons biased behavior toward activity-related energy expenditure, whilst the opposite manipulations favored energy intake. Strikingly, concomitant activation of D1-neurons and inhibition of D2-neurons precipitated weight loss in anorexia models. These results suggest that dysregulations of NAc dopaminoceptive neurons might be at the core of EDs.


Assuntos
Núcleo Accumbens , Receptores de Dopamina D2 , Camundongos , Masculino , Animais , Núcleo Accumbens/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Metabolismo Energético
2.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014299

RESUMO

Infradian mood and sleep-wake rhythms with periods of 48 hr and beyond have been observed in bipolar disorder (BD) subjects that even persist in time isolation, indicating an endogenous origin. Here we show that mice exposed to methamphetamine (Meth) in drinking water develop infradian locomotor rhythms with periods of 48 hr and beyond which extend to sleep length and mania-like behaviors in support of a model for cycling in BD. This cycling capacity is abrogated upon genetic disruption of DA production in DA neurons of the ventral tegmental area (VTA) or ablation of nucleus accumbens (NAc) projecting, dopamine (DA) neurons. Chemogenetic activation of NAc-projecting DA neurons leads to locomotor period lengthening in clock deficient mice, while cytosolic calcium in DA processes of the NAc was found fluctuating synchronously with locomotor behavior. Together, our findings argue that BD cycling relies on infradian rhythm generation that depends on NAc-projecting DA neurons.

3.
PLoS One ; 18(8): e0289770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37624765

RESUMO

Evidence suggests that subcortical hyperdopaminergia alters cognitive function in schizophrenia and antipsychotic drugs (APD) fail at rescuing cognitive deficits in patients. In a previous study, we showed that blocking D2 dopamine receptors (D2R), a core action of APD, led to profound reshaping of mesohippocampal fibers, deficits in synaptic transmission and impairments in learning and memory in the mouse hippocampus (HP). However, it is currently unknown how excessive dopamine affects HP-related cognitive functions, and how APD would impact HP functions in such a state. After verifying the presence of DAT-positive neuronal projections in the ventral (temporal), but not in the dorsal (septal), part of the HP, GBR12935, a blocker of dopamine transporter (DAT), was infused in the CA1 of adult C57Bl/6 mice to produce local hyperdopaminergia. Chronic GBR12935 infusion in temporal CA1 induced a mild learning impairment in the Morris Water Maze and abolished long-term recognition memory in novel-object (NORT) and object-place recognition tasks (OPRT). Deficits were accompanied by a significant decrease in DAT+ mesohippocampal fibers. Intrahippocampal or systemic treatment with sulpiride during GBR infusions improved the NORT deficit but not that of OPRT. In vitro application of GBR on hippocampal slices abolished long-term depression (LTD) of fEPSP in temporal CA1. LTD was rescued by co-application with sulpiride. In conclusion, chronic DAT blockade in temporal CA1 profoundly altered mesohippocampal modulation of hippocampal functions. Contrary to previous observations in normodopaminergic mice, antagonising D2Rs was beneficial for cognitive functions in the context of hippocampal hyperdopaminergia.


Assuntos
Antipsicóticos , Animais , Camundongos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Sulpirida/farmacologia , Sulpirida/uso terapêutico , Hipocampo , Transtornos da Memória/tratamento farmacológico , Camundongos Endogâmicos C57BL
4.
Biomolecules ; 13(3)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36979445

RESUMO

Noradrenaline (NE) plays an integral role in shaping behavioral outcomes including anxiety/depression, fear, learning and memory, attention and shifting behavior, sleep-wake state, pain, and addiction. However, it is unclear whether dysregulation of NE release is a cause or a consequence of maladaptive orientations of these behaviors, many of which associated with psychiatric disorders. To address this question, we used a unique genetic model in which the brain-specific vesicular monoamine transporter-2 (VMAT2) gene expression was removed in NE-positive neurons disabling NE release in the entire brain. We engineered VMAT2 gene splicing and NE depletion by crossing floxed VMAT2 mice with mice expressing the Cre-recombinase under the dopamine ß-hydroxylase (DBH) gene promotor. In this study, we performed a comprehensive behavioral and transcriptomic characterization of the VMAT2DBHcre KO mice to evaluate the role of central NE in behavioral modulations. We demonstrated that NE depletion induces anxiolytic and antidepressant-like effects, improves contextual fear memory, alters shifting behavior, decreases the locomotor response to amphetamine, and induces deeper sleep during the non-rapid eye movement (NREM) phase. In contrast, NE depletion did not affect spatial learning and memory, working memory, response to cocaine, and the architecture of the sleep-wake cycle. Finally, we used this model to identify genes that could be up- or down-regulated in the absence of NE release. We found an up-regulation of the synaptic vesicle glycoprotein 2c (SV2c) gene expression in several brain regions, including the locus coeruleus (LC), and were able to validate this up-regulation as a marker of vulnerability to chronic social defeat. The NE system is a complex and challenging system involved in many behavioral orientations given it brain wide distribution. In our study, we unraveled specific role of NE neurotransmission in multiple behavior and link it to molecular underpinning, opening future direction to understand NE role in health and disease.


Assuntos
Encéfalo , Transcriptoma , Camundongos , Animais , Encéfalo/metabolismo , Norepinefrina/metabolismo , Depressão/metabolismo , Antidepressivos/farmacologia
5.
Biol Psychiatry ; 93(11): 966-975, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36958999

RESUMO

BACKGROUND: Astrocytes control synaptic activity by modulating perisynaptic concentrations of ions and neurotransmitters including dopamine (DA) and, as such, could be involved in the modulating aspects of mammalian behavior. METHODS: We produced a conditional deletion of the vesicular monoamine transporter 2 (VMAT2) specifically in astrocytes (aVMTA2cKO mice) and studied the effects of the lack of VMAT2 in prefrontal cortex (PFC) astrocytes on the regulation of DA levels, PFC circuit functions, and behavioral processes. RESULTS: We found a significant reduction of medial PFC (mPFC) DA levels and excessive grooming and compulsive repetitive behaviors in aVMAT2cKO mice. The mice also developed a synaptic pathology, expressed through increased relative AMPA versus NMDA receptor currents in synapses of the dorsal striatum receiving inputs from the mPFC. Importantly, behavioral and synaptic phenotypes were rescued by re-expression of mPFC VMAT2 and L-DOPA treatment, showing that the deficits were driven by mPFC astrocytes that are critically involved in developmental DA homeostasis. By analyzing human tissue samples, we found that VMAT2 is expressed in human PFC astrocytes, corroborating the potential translational relevance of our observations in mice. CONCLUSIONS: Our study shows that impairment of the astrocytic control of DA in the mPFC leads to symptoms resembling obsessive-compulsive spectrum disorders such as trichotillomania and has a profound impact on circuit function and behaviors.


Assuntos
Astrócitos , Dopamina , Camundongos , Animais , Humanos , Astrócitos/fisiologia , Asseio Animal , Sinapses/fisiologia , Córtex Pré-Frontal/fisiologia , Mamíferos
6.
Cereb Cortex ; 32(3): 479-489, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34247243

RESUMO

GPR88 is an orphan G-protein-coupled receptor (GPCR) highly expressed in striatal medium spiny neurons (MSN), also found in cortical neurons at low level. In MSN, GPR88 has a canonical GPCR plasma membrane/cytoplasmic expression, whereas in cortical neurons, we previously reported an atypical intranuclear localization. Molecular size analysis suggests that GPR88, expressed in plasma membrane of MSN or in nuclear compartment of cortical neurons, corresponds to the full-length protein. By transfection of cortical neurons, we showed that GPR88 fluorescent chimeras exhibit a nuclear localization. This localization is contingent on the third intracytoplasmic loop and C-terminus domains, even though these domains do not contain any known nuclear localization signals (NLS). Using yeast two-hybrid screening with these domains, we identified the nuclear proteins ATRX, TOP2B, and BAZ2B, all involved in chromatin remodeling, as potential protein partners of GPR88. We also validated the interaction of GPR88 with these nuclear proteins by proximity ligation assay on cortical neurons in culture and coimmunoprecipitation experiments on cortical extracts from GPR88 wild-type (WT) and knockout (KO) mice. The identification of GPR88 subcellular partners may provide novel functional insights for nonclassical modes of GPCR action that could be relevant in the maturating process of neocortical neurons.


Assuntos
Proteínas Nucleares , Receptores Acoplados a Proteínas G , Animais , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
7.
Neuropharmacology ; 184: 108440, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33340529

RESUMO

Reduced expression of a schizophrenia-associated gene Dystrobrevin Binding Protein 1 (DTNBP1) and its protein product dysbindin-1, has been reported in the brains of schizophrenia patients. DTNBP1-null mutant Sdy (Sandy) mice exhibit several behavioral features relevant to schizophrenia. Changes in dopaminergic as well as glutamatergic and GABAergic neurotransmission in cortico-limbic regions have been reported in Sdy mice. Since dysbindin-1 is expressed in multiple brain regions, it is not known whether dopamine (DA) changes observed in Sdy null mutants are due to dysbindin-1 deficiency in DAergic neurons specifically. Here, using a mouse line with conditional knockout (cKO) of DTNBP1 in DA neurons, we studied the effects of dysbindin-1 deficiency on DA release and DA-dependent behaviors. Spontaneous locomotor activity of cKO mice in novel environment was significantly reduced initially but was comparable at later time points with littermate controls. However, the locomotion-enhancing effect of a low dose of d-amphetamine (d-AMPH; 2.5 mg/kg, ip) was significantly attenuated in the cKO mice suggesting a dampened mesolimbic DA transmission. Similarly, the prepulse inhibition disrupting effect of d-AMPH was found to be significantly reduced in the mutant mice. No significant differences between the cKO and control mice were observed in tests of anxiety, spatial learning and memory and social interaction. In- vivo microdialysis in the nucleus accumbens (NAc) showed a decrease in d-AMPH-induced extracellular DA release in the cKO mice. No significant alterations in protein levels of DA transporter, phosphorylated CaM kinase-II or Akt308 in the NAc were observed in the cKO mice. Taken together, our data suggest an important role of dysbindin-1 in maintaining mesolimbic DA tone and call for further investigations identifying mechanisms linking dysbindin-1, DA and schizophrenia.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Disbindina/deficiência , Aprendizagem em Labirinto/fisiologia , Núcleo Accumbens/metabolismo , Interação Social , Animais , Disbindina/genética , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
8.
Addict Biol ; 26(4): e12995, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33368923

RESUMO

Prescription stimulants, such as d-amphetamine or methylphenidate are used to treat suffering from attention-deficit hyperactivity disorder (ADHD). They potently release dopamine (DA) and norepinephrine (NE) and cause phosphorylation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA1 in the striatum. Whether other brain regions are also affected remains elusive. Here, we demonstrate that d-amphetamine and methylphenidate increase phosphorylation at Ser845 (pS845-GluA1) in the membrane fraction of mouse cerebellum homogenate. We identify Bergmann glial cells as the source of pS845-GluA1 and demonstrate a requirement for intact NE release. Consequently, d-amphetamine-induced pS845-GluA1 was prevented by ß1-adenoreceptor antagonist, whereas the blockade of DA D1 receptor had no effect. Together, these results indicate that NE regulates GluA1 phosphorylation in Bergmann glial cells in response to prescription stimulants.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Cerebelo/metabolismo , Dextroanfetamina/farmacologia , Metilfenidato/farmacologia , Fosfotransferases , Animais , Masculino , Camundongos , Norepinefrina/metabolismo , Fosforilação , Receptores de Dopamina D1/metabolismo
9.
Nat Commun ; 11(1): 1635, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32242018

RESUMO

It remains unclear why many patients with depression do not respond to antidepressant treatment. In three cohorts of individuals with depression and treated with serotonin-norepinephrine reuptake inhibitor (N = 424) we show that responders, but not non-responders, display an increase of GPR56 mRNA in the blood. In a small group of subjects we also show that GPR56 is downregulated in the PFC of individuals with depression that died by suicide. In mice, we show that chronic stress-induced Gpr56 downregulation in the blood and prefrontal cortex (PFC), which is accompanied by depression-like behavior, and can be reversed by antidepressant treatment. Gpr56 knockdown in mouse PFC is associated with depressive-like behaviors, executive dysfunction and poor response to antidepressant treatment. GPR56 peptide agonists have antidepressant-like effects and upregulated AKT/GSK3/EIF4 pathways. Our findings uncover a potential role of GPR56 in antidepressant response.


Assuntos
Antidepressivos/administração & dosagem , Transtorno Depressivo Maior/tratamento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Adulto , Animais , Estudos de Coortes , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptores Acoplados a Proteínas G/genética , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Resultado do Tratamento
10.
Mol Psychiatry ; 25(4): 732-749, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30127471

RESUMO

Astrocytes orchestrate neural development by powerfully coordinating synapse formation and function and, as such, may be critically involved in the pathogenesis of neurodevelopmental abnormalities and cognitive deficits commonly observed in psychiatric disorders. Here, we report the identification of a subset of cortical astrocytes that are competent for regulating dopamine (DA) homeostasis during postnatal development of the prefrontal cortex (PFC), allowing for optimal DA-mediated maturation of excitatory circuits. Such control of DA homeostasis occurs through the coordinated activity of astroglial vesicular monoamine transporter 2 (VMAT2) together with organic cation transporter 3 and monoamine oxidase type B, two key proteins for DA uptake and metabolism. Conditional deletion of VMAT2 in astrocytes postnatally produces loss of PFC DA homeostasis, leading to defective synaptic transmission and plasticity as well as impaired executive functions. Our findings show a novel role for PFC astrocytes in the DA modulation of cognitive performances with relevance to psychiatric disorders.


Assuntos
Astrócitos/metabolismo , Disfunção Cognitiva/metabolismo , Dopamina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Encéfalo/metabolismo , Disfunção Cognitiva/fisiopatologia , Dopamina/farmacologia , Homeostase , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia
11.
Mol Psychiatry ; 25(6): 1245-1259, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31619760

RESUMO

Current antidepressants act principally by blocking monoamine reuptake by high-affinity transporters in the brain. However, these antidepressants show important shortcomings such as slow action onset and limited efficacy in nearly a third of patients with major depression disorder. Here, we report the development of a prodrug targeting organic cation transporters (OCT), atypical monoamine transporters recently implicated in the regulation of mood. Using molecular modeling, we designed a selective OCT2 blocker, which was modified to increase brain penetration. This compound, H2-cyanome, was tested in a rodent model of chronic depression induced by 7-week corticosterone exposure. In male mice, prolonged administration of H2-cyanome induced positive effects on several behaviors mimicking symptoms of depression, including anhedonia, anxiety, social withdrawal, and memory impairment. Importantly, in this validated model, H2-cyanome compared favorably with the classical antidepressant fluoxetine, with a faster action on anhedonia and better anxiolytic effects. Integrated Z-scoring across these depression-like variables revealed a lower depression score for mice treated with H2-cyanome than for mice treated with fluoxetine for 3 weeks. Repeated H2-cyanome administration increased ventral tegmental area dopaminergic neuron firing, which may underlie its rapid action on anhedonia. H2-cyanome, like fluoxetine, also modulated several intracellular signaling pathways previously involved in antidepressant response. Our findings provide proof-of-concept of antidepressant efficacy of an OCT blocker, and a mechanistic framework for the development of new classes of antidepressants and therapeutic alternatives for resistant depression and other psychiatric disturbances such as anxiety.


Assuntos
Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Anedonia/efeitos dos fármacos , Animais , Antidepressivos/administração & dosagem , Antidepressivos/farmacocinética , Ansiedade/tratamento farmacológico , Modelos Animais de Doenças , Fluoxetina/uso terapêutico , Humanos , Masculino , Memória/efeitos dos fármacos , Camundongos
12.
Neuropharmacology ; 164: 107902, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31811873

RESUMO

Vesicular glutamate transporters (VGLUT1-3) mediate the uptake of glutamate into synaptic vesicles. VGLUTs are pivotal actors of excitatory transmission and of almost all brain functions. Their implication in various pathologies has been clearly documented. Despite their functional importance, the pharmacology of VGLUTs is limited to a few dyes such as Trypan Blue, Rose Bengal or Brilliant Yellow type. Here, we report the design and evaluation of new potent analogs based on Trypan Blue scaffold. Our best compound, named LSP5-2157, has an EC50 of 50 nM on glutamate vesicular uptake. Using a 3D homology model of VGLUT1 and docking experiments, we determined its putative binding subdomains within vesicular glutamate transporters and validated the structural requirement for VGLUT inhibition. To better estimate the specificity and potency of LSP5-2157, we also investigated its ability to block glutamatergic transmission in autaptic hippocampal cells. Neither glutamate receptors nor GABAergic transmission or transmission machinery were affected by LSP5-2157. Low doses of compound reversibly reduce glutamatergic neurotransmission in hippocampal autpases. LSP5-2157 had a low and depressing effect on synaptic efficacy in hippocampal slice. Furthermore, LSP5-2157 had no effect on NMDA-R- mediated fEPSP but reduce synaptic plasticity induced by 3 trains of 100 Hz. Finally, LSP5-2157 had the capacity to inhibit VGLUT3-dependent auditory synaptic transmission in the guinea pig cochlea. In this model, it abolished the compound action potential of auditory nerve at high concentration showing the limited permeation of LSP5-2157 in an in-vivo model. In summary, the new ligand LSP5-2157, has a high affinity and specificity for VGLUTs and shows some permeability in isolated neuron, tissue preparations or in vivo in the auditory system. These findings broaden the field of VGLUTs inhibitors and open the way to their use to assess glutamatergic functions in vitro and in vivo.


Assuntos
Proteínas Vesiculares de Transporte de Glutamato/antagonistas & inibidores , Potenciais de Ação/efeitos dos fármacos , Animais , Cóclea/efeitos dos fármacos , Nervo Coclear/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Cobaias , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
13.
Epilepsia ; 60(10): 2128-2140, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31535376

RESUMO

OBJECTIVE: In Genetic Absence Epilepsy Rats From Strasbourg (GAERSs), epileptogenesis takes place during brain maturation and correlates with increased mRNA expression of D3 dopamine receptors (D3R). Whether these alterations are the consequence of seizure repetition or contribute to the development of epilepsy remains to be clarified. Here, we addressed the involvement of the dopaminergic system in epilepsy onset in GAERSs. METHODS: Experiments were performed using rats at different stages of brain maturation from three strains according to their increasing propensity to develop absence seizures: nonepileptic control rats (NECs), Wistar Hannover rats, and GAERSs. Changes in dopaminergic neurotransmission were investigated using different behavioral and neurochemical approaches: autoradiography of D3R and dopamine transporter, single photon emission computed tomographic imaging, acute and chronic drug effects on seizure recordings (dopaminergic agonists and antagonists), quinpirole-induced yawns and dopamine synaptosomal uptake, microdialysis, brain tissue monoamines, and brain-derived neurotrophic factor quantification. RESULTS: Autoradiography revealed an increased expression of D3R in 14-day-old GAERSs, before absence seizure onset, that persists in adulthood, as compared to age-matched NECs. This was confirmed by increased yawns, a marker of D3R activity, and increased seizures when animals were injected with quinpirole at low doses to activate D3R. We also observed a concomitant increase in the expression and activity of the dopamine transporter in GAERSs before seizure onset, consistent with both lowered dopamine basal level and increased phasic responses. SIGNIFICANCE: Our data show that the dopaminergic system is persistently altered in GAERSs, which may contribute not only to behavioral comorbidities but also as an etiopathogenic factor in the development of epilepsy. The data suggest that an imbalanced dopaminergic tone may contribute to absence epilepsy development and seizure onset, as its reversion by a chronic treatment with a dopamine stabilizer significantly suppressed epileptogenesis. Our data suggest a potential new target for antiepileptic therapies and/or improvement of quality of life of epileptic patients.


Assuntos
Encéfalo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Epilepsia Tipo Ausência/metabolismo , Receptores de Dopamina D3/metabolismo , Animais , Comportamento Animal/fisiologia , Encéfalo/diagnóstico por imagem , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Epilepsia Tipo Ausência/diagnóstico por imagem , Ratos , Tomografia Computadorizada de Emissão de Fóton Único , Bocejo
14.
PLoS Genet ; 15(8): e1008352, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31449520

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Rare genetic mutations in genes such as Parkin, Pink1, DJ-1, α-synuclein, LRRK2 and GBA are found to be responsible for the disease in about 15% of the cases. A key unanswered question in PD pathophysiology is why would these mutations, impacting basic cellular processes such as mitochondrial function and neurotransmission, lead to selective degeneration of SNc DA neurons? We previously showed in vitro that SNc DA neurons have an extremely high rate of mitochondrial oxidative phosphorylation and ATP production, characteristics that appear to be the result of their highly complex axonal arborization. To test the hypothesis in vivo that axon arborization size is a key determinant of vulnerability, we selectively labeled SNc or VTA DA neurons using floxed YFP viral injections in DAT-cre mice and showed that SNc DA neurons have a much more arborized axon than those of the VTA. To further enhance this difference, which may represent a limiting factor in the basal vulnerability of these neurons, we selectively deleted in mice the DA D2 receptor (D2-cKO), a key negative regulator of the axonal arbour of DA neurons. In these mice, SNc DA neurons have a 2-fold larger axonal arborization, release less DA and are more vulnerable to a 6-OHDA lesion, but not to α-synuclein overexpression when compared to control SNc DA neurons. This work adds to the accumulating evidence that the axonal arborization size of SNc DA neurons plays a key role in their vulnerability in the context of PD.


Assuntos
Neurônios Dopaminérgicos/patologia , Plasticidade Neuronal/genética , Doença de Parkinson/patologia , Parte Compacta da Substância Negra/patologia , Receptores de Dopamina D2/genética , Animais , Axônios/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/patologia , Fosforilação Oxidativa , Doença de Parkinson/genética , Parte Compacta da Substância Negra/citologia , Receptores de Dopamina D2/metabolismo
15.
Sci Rep ; 9(1): 7850, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127135

RESUMO

Clinical research has shown that chronic antipsychotic drug (APD) treatment further decreases cortical gray matter and hippocampus volume, and increases striatal and ventricular volume in patients with schizophrenia. D2-like receptor blockade is necessary for clinical efficacy of the drugs, and may be responsible for inducing these volume changes. However, the role of other D2-like receptors, such as D3, remains unclear. Following our previous work, we undertook a longitudinal study to examine the effects of chronic (9-week) typical (haloperidol (HAL)) and atypical (clozapine (CLZ)) APDs on the neuroanatomy of wild-type (WT) and dopamine D3-knockout (D3KO) mice using magnetic resonance imaging (MRI) and histological assessments in a sub-region of the anterior cingulate cortex (the prelimbic [PL] area) and striatum. D3KO mice had larger striatal volume prior to APD administration, coupled with increased glial and neuronal cell density. Chronic HAL administration increased striatal volume in both WT and D3KO mice, and reduced PL area volume in D3KO mice both at trend level. CLZ increased volume of the PL area of WT mice at trend level, but decreased D3KO PL area glial cell density. Both typical and atypical APD administration induced neuroanatomical remodeling of regions rich in D3 receptor expression, and typically altered in schizophrenia. Our findings provide novel insights on the role of D3 receptors in structural changes observed following APD administration in clinical populations.


Assuntos
Antipsicóticos/farmacologia , Corpo Estriado/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Receptores de Dopamina D3/metabolismo , Animais , Antipsicóticos/uso terapêutico , Contagem de Células , Clozapina/farmacologia , Clozapina/uso terapêutico , Corpo Estriado/anatomia & histologia , Corpo Estriado/diagnóstico por imagem , Feminino , Giro do Cíngulo/anatomia & histologia , Giro do Cíngulo/diagnóstico por imagem , Haloperidol/farmacologia , Haloperidol/uso terapêutico , Humanos , Injeções Intraperitoneais , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/patologia , Receptores de Dopamina D3/genética , Esquizofrenia/tratamento farmacológico , Esquizofrenia/patologia
16.
eNeuro ; 6(3)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31097625

RESUMO

Reward-related behavior is complex and its dysfunction correlated with neuropsychiatric illness. Dopamine (DA) neurons of the ventral tegmental area (VTA) have long been associated with different aspects of reward function, but it remains to be disentangled how distinct VTA DA neurons contribute to the full range of behaviors ascribed to the VTA. Here, a recently identified subtype of VTA neurons molecularly defined by NeuroD6 (NEX1M) was addressed. Among all VTA DA neurons, less than 15% were identified as positive for NeuroD6. In addition to dopaminergic markers, sparse NeuroD6 neurons expressed the vesicular glutamate transporter 2 (Vglut2) gene. To achieve manipulation of NeuroD6 VTA neurons, NeuroD6(NEX)-Cre-driven mouse genetics and optogenetics were implemented. First, expression of vesicular monoamine transporter 2 (VMAT2) was ablated to disrupt dopaminergic function in NeuroD6 VTA neurons. Comparing Vmat2lox/lox;NEX-Cre conditional knock-out (cKO) mice with littermate controls, it was evident that baseline locomotion, preference for sugar and ethanol, and place preference upon amphetamine-induced and cocaine-induced conditioning were similar between genotypes. However, locomotion upon repeated psychostimulant administration was significantly elevated above control levels in cKO mice. Second, optogenetic activation of NEX-Cre VTA neurons was shown to induce DA release and glutamatergic postsynaptic currents within the nucleus accumbens. Third, optogenetic stimulation of NEX-Cre VTA neurons in vivo induced significant place preference behavior, while stimulation of VTA neurons defined by Calretinin failed to cause a similar response. The results show that NeuroD6 VTA neurons exert distinct regulation over specific aspects of reward-related behavior, findings that contribute to the current understanding of VTA neurocircuitry.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Recompensa , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia , Anfetamina/administração & dosagem , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cocaína/administração & dosagem , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Etanol/administração & dosagem , Feminino , Locomoção/efeitos dos fármacos , Masculino , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Optogenética , RNA Mensageiro/metabolismo , Área Tegmentar Ventral/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/fisiologia
17.
Brain Struct Funct ; 224(3): 1219-1244, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30656447

RESUMO

Hevin, also known as SPARC-like 1, is a member of the secreted protein acidic and rich in cysteine family of matricellular proteins, which has been implicated in neuronal migration and synaptogenesis during development. Unlike previously characterized matricellular proteins, hevin remains strongly expressed in the adult brain in both astrocytes and neurons, but its precise pattern of expression is unknown. The present study provides the first systematic description of hevin mRNA distribution in the adult mouse brain. Using isotopic in situ hybridization, we showed that hevin is strongly expressed in the cortex, hippocampus, basal ganglia complex, diverse thalamic nuclei and brainstem motor nuclei. To identify the cellular phenotype of hevin-expressing cells, we used double fluorescent in situ hybridization in mouse and human adult brains. In the mouse, hevin mRNA was found in the majority of astrocytes but also in specific neuronal populations. Hevin was expressed in almost all parvalbumin-positive projection neurons and local interneurons. In addition, hevin mRNA was found in: (1) subsets of other inhibitory GABAergic neuronal subtypes, including calbindin, cholecystokinin, neuropeptide Y, and somatostatin-positive neurons; (2) subsets of glutamatergic neurons, identified by the expression of the vesicular glutamate transporters VGLUT1 and VGLUT2; and (3) the majority of cholinergic neurons from motor nuclei. Hevin mRNA was absent from all monoaminergic neurons and cholinergic neurons of the ascending pathway. A similar cellular profile of expression was observed in human, with expression of hevin in parvalbumin interneurons and astrocytes in the cortex and caudate nucleus as well as in cortical glutamatergic neurons. Furthermore, hevin transcript was enriched in ribosomes of astrocytes and parvalbumin neurons providing a direct evidence of hevin mRNAs translation in these cell types. This study reveals the unique and complex expression profile of the matricellular protein hevin in the adult brain. This distribution is compatible with a role of hevin in astrocytic-mediated adult synaptic plasticity and in the regulation of network activity mediated by parvalbumin-expressing neurons.


Assuntos
Astrócitos/metabolismo , Encéfalo/citologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Neurônios/metabolismo , Parvalbuminas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Mapeamento Encefálico , Transportador 1 de Aminoácido Excitatório/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Mudanças Depois da Morte , RNA Mensageiro/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Adulto Jovem
18.
Neuropharmacology ; 146: 74-83, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30468798

RESUMO

The opposing action of dopamine and acetylcholine has long been known to play an important role in basal ganglia physiology. However, the quantitative analysis of dopamine and acetylcholine signal interaction has been difficult to perform in the native context because the striatum comprises mainly two subtypes of medium-sized spiny neurons (MSNs) on which these neuromodulators exert different actions. We used biosensor imaging in live brain slices of dorsomedial striatum to monitor changes in intracellular cAMP at the level of individual MSNs. We observed that the muscarinic agonist oxotremorine decreases cAMP selectively in the MSN subpopulation that also expresses D1 dopamine receptors, an action mediated by the M4 muscarinic receptor. This receptor has a high efficacy on cAMP signaling and can shut down the positive cAMP response induced by dopamine, at acetylcholine concentrations which are consistent with physiological levels. This supports our prediction based on theoretical modeling that acetylcholine could exert a tonic inhibition on striatal cAMP signaling, thus supporting the possibility that a pause in acetylcholine release is required for phasic dopamine to transduce a cAMP signal in D1 MSNs. In vivo experiments with acetylcholinesterase inhibitors donepezil and tacrine, as well as with the positive allosteric modulators of M4 receptor VU0152100 and VU0010010 show that this effect is sufficient to reverse the increased locomotor activity of DAT-knockout mice. This suggests that M4 receptors could be a novel therapeutic target to treat hyperactivity disorders.


Assuntos
Acetilcolina/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , AMP Cíclico/metabolismo , Dopamina/farmacologia , Receptor Muscarínico M4/agonistas , Receptores de Dopamina D1/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Agonistas Muscarínicos , Neuritos/metabolismo , Neurônios/efeitos dos fármacos , Oxotremorina/farmacologia
20.
Nat Med ; 24(5): 591-597, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29736027

RESUMO

Depression, a devastating psychiatric disorder, is a leading cause of disability worldwide. Current antidepressants address specific symptoms of the disease, but there is vast room for improvement 1 . In this respect, new compounds that act beyond classical antidepressants to target signal transduction pathways governing synaptic plasticity and cellular resilience are highly warranted2-4. The extracellular signal-regulated kinase (ERK) pathway is implicated in mood regulation5-7, but its pleiotropic functions and lack of target specificity prohibit optimal drug development. Here, we identified the transcription factor ELK-1, an ERK downstream partner 8 , as a specific signaling module in the pathophysiology and treatment of depression that can be targeted independently of ERK. ELK1 mRNA was upregulated in postmortem hippocampal tissues from depressed suicides; in blood samples from depressed individuals, failure to reduce ELK1 expression was associated with resistance to treatment. In mice, hippocampal ELK-1 overexpression per se produced depressive behaviors; conversely, the selective inhibition of ELK-1 activation prevented depression-like molecular, plasticity and behavioral states induced by stress. Our work stresses the importance of target selectivity for a successful approach for signal-transduction-based antidepressants, singles out ELK-1 as a depression-relevant transducer downstream of ERK and brings proof-of-concept evidence for the druggability of ELK-1.


Assuntos
Antidepressivos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Elk-1 do Domínio ets/metabolismo , Adulto , Animais , Comportamento Animal , Depressão/sangue , Depressão/genética , Depressão/fisiopatologia , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Plasticidade Neuronal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Psicológico/complicações , Proteínas Elk-1 do Domínio ets/sangue , Proteínas Elk-1 do Domínio ets/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA