RESUMO
BACKGROUND: Gastroenteritis is a public health concern due to high morbidity and mortality among children. Rotaviruses are the leading etiological agents of severe gastroenteritis in children and accounts for more than half a million deaths per year in Africa. The study aimed at investigating the rotavirus genotypes that were circulating in children aged 5 years and below in and around Mukuru slums in Nairobi County Kenya. METHODS: A purposive cross sectional sampling method was applied where 166 samples were collected from children below 5 years of age and taken to Kenya Medical Research Institute virology laboratory. Presence of rotaviruses was determined using reverse transcription polymerase chain reaction, while extraction was done using ZR Soil/Fecal RNA MicroPrep™ extraction kit. This was followed by reverse transcription and genotyping using various group A rotavirus primers. RESULTS: The G type was successfully determined in 37 (92.5%), while the P type was successfully determined in 35 (87.5%) of the 40 (24%) page positive samples. Type G1 was the most predominant of the G types (40.5%), and the incidences of G3 and G9 were 21.6 and 32.4% respectively. Mixed types G3/G9 were detected at 5.4%. Three P types existed in Mukuru slums, P[8] (60%), P[6] (22.9%), P[4] (11.4) and their relative incidence varied over the 15 months of this study. CONCLUSIONS: The G types and P types detected in this study are important causes of acute gastroenteritis in Mukuru slums Nairobi Kenya. An indication that the prevalence of certain genotypes may change over a rotavirus season is significant and mirrors observations from studies in other tropical climates. Thus monitoring of the genotypic changes among circulating viruses should be encouraged over the coming years.
Assuntos
Gastroenterite , Áreas de Pobreza , Infecções por Rotavirus , Rotavirus , Pré-Escolar , Estudos Transversais , Fezes/virologia , Feminino , Gastroenterite/diagnóstico , Gastroenterite/epidemiologia , Gastroenterite/virologia , Humanos , Lactente , Quênia/epidemiologia , Masculino , Rotavirus/classificação , Rotavirus/genética , Rotavirus/isolamento & purificação , Infecções por Rotavirus/diagnóstico , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/virologiaRESUMO
Malaria is caused by Plasmodium species, whose transmission to vertebrate hosts is facilitated by mosquito vectors. The transition from the cold blooded mosquito vector to the host represents physiological stress to the parasite, and additionally malaria blood stage infection is characterised by intense fever periods. In recent years, it has become clear that heat shock proteins play an essential role during the parasite's life cycle. Plasmodium falciparum expresses two prominent heat shock proteins: heat shock protein 70 (PfHsp70) and heat shock protein 90 (PfHsp90). Both of these proteins have been implicated in the development and pathogenesis of malaria. In eukaryotes, Hsp70 and Hsp90 proteins are functionally linked by an essential adaptor protein known as the Hsp70-Hsp90 organising protein (Hop). In this study, recombinant P. falciparum Hop (PfHop) was heterologously produced in E. coli and purified by nickel affinity chromatography. Using specific anti-PfHop antisera, the expression and localisation of PfHop in P. falciparum was investigated. PfHop was shown to co-localise with PfHsp70 and PfHsp90 in parasites at the trophozoite stage. Gel filtration and co-immunoprecipitation experiments suggested that PfHop was present in a complex together with PfHsp70 and PfHsp90. The association of PfHop with both PfHsp70 and PfHsp90 suggests that this protein may mediate the functional interaction between the two chaperones.