RESUMO
Cryptic exons enable delivery of therapies only to sick neurons in a motor neuron disease.
Assuntos
Éxons , Terapia Genética , Doença dos Neurônios Motores , Medicina de Precisão , Animais , Humanos , Esclerose Lateral Amiotrófica/terapia , Esclerose Lateral Amiotrófica/genética , Terapia Genética/métodos , Doença dos Neurônios Motores/terapia , Neurônios Motores/fisiologiaRESUMO
Neurons are long-lived, terminally differentiated cells with limited regenerative capacity. Cellular stressors such as endoplasmic reticulum (ER) protein folding stress and membrane trafficking stress accumulate as neurons age and accompany age-dependent neurodegeneration. Current strategies to improve neuronal resilience are focused on using factors to reprogram neurons or targeting specific proteostasis pathways. We discovered a different approach. In an unbiased screen for modifiers of neuronal membrane trafficking defects, we unexpectedly identified a role for histone deacetylases (HDACs) in limiting cellular flexibility in choosing cellular pathways to respond to diverse types of stress. Genetic or pharmacological inactivation of HDACs resulted in improved neuronal health in response to ER protein folding stress and endosomal membrane trafficking stress in C. elegans and mammalian neurons. Surprisingly, HDAC inhibition enabled neurons to activate latent proteostasis pathways tailored to the nature of the individual stress, instead of generalized transcriptional upregulation. These findings shape our understanding of neuronal stress responses and suggest new therapeutic strategies to enhance neuronal resilience.
RESUMO
BACKGROUND: Many neurodegenerative disease treatments, such as deep brain stimulation for Parkinson's Disease, can alleviate symptoms by primarily compensating for circuit dysfunctions. However, the stimulation's effect on the underlying disease progression remains relatively unknown. Here, we report that neuromodulation can not only modulate circuit function but also modulate the in vivo spreading dynamics of α-synuclein pathology, the primary pathological hallmark observed in Parkinson's Disease. METHODS: In a mouse model, pre-formed fibrils were injected into the striatum to induce widespread α-synuclein pathology. Two days after fibril injection, mice were treated for two weeks with daily optogenetic stimulation of the Secondary Motor Area, Layer V. Whole brains were then extracted, immunolabeled, cleared, and imaged with light-sheet fluorescent microscopy. RESULTS: Repeated optogenetic stimulation led to a decrease in pathology at the site of stimulation and at various cortical and subcortical regions, while the contralateral cortex saw a consistent increase. Aligning the pathology changes with optogenetic-fMRI measured brain activity, we found that the changes in pathology and brain function had similar spatial locations but opposite polarity. CONCLUSION: These results demonstrate the ability to modulate and predict whole brain pathology changes using neuromodulation, opening a new horizon for investigating optimized neuromodulation therapies.
Assuntos
Optogenética , alfa-Sinucleína , Animais , Masculino , Camundongos , alfa-Sinucleína/metabolismo , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Estimulação Encefálica Profunda/métodos , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Optogenética/métodos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologiaRESUMO
In frontotemporal lobar degeneration (FTLD), pathological protein aggregation in specific brain regions is associated with declines in human-specialized social-emotional and language functions. In most patients, disease protein aggregates contain either TDP-43 (FTLD-TDP) or tau (FTLD-tau). Here, we explored whether FTLD-associated regional degeneration patterns relate to regional gene expression of human accelerated regions (HARs), conserved sequences that have undergone positive selection during recent human evolution. To this end, we used structural neuroimaging from patients with FTLD and human brain regional transcriptomic data from controls to identify genes expressed in FTLD-targeted brain regions. We then integrated primate comparative genomic data to test our hypothesis that FTLD targets brain regions linked to expression levels of recently evolved genes. In addition, we asked whether genes whose expression correlates with FTLD atrophy are enriched for genes that undergo cryptic splicing when TDP-43 function is impaired. We found that FTLD-TDP and FTLD-tau subtypes target brain regions with overlapping and distinct gene expression correlates, highlighting many genes linked to neuromodulatory functions. FTLD atrophy-correlated genes were strongly enriched for HARs. Atrophy-correlated genes in FTLD-TDP showed greater overlap with TDP-43 cryptic splicing genes and genes with more numerous TDP-43 binding sites compared with atrophy-correlated genes in FTLD-tau. Cryptic splicing genes were enriched for HAR genes, and vice versa, but this effect was due to the confounding influence of gene length. Analyses performed at the individual-patient level revealed that the expression of HAR genes and cryptically spliced genes within putative regions of disease onset differed across FTLD-TDP subtypes. Overall, our findings suggest that FTLD targets brain regions that have undergone recent evolutionary specialization and provide intriguing potential leads regarding the transcriptomic basis for selective vulnerability in distinct FTLD molecular-anatomical subtypes.
Assuntos
Encéfalo , Degeneração Lobar Frontotemporal , Humanos , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Masculino , Feminino , Idoso , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Pessoa de Meia-Idade , Proteínas tau/genética , Proteínas tau/metabolismo , Atrofia/genética , Animais , Evolução Molecular , Expressão Gênica/genéticaRESUMO
This letter demonstrates the potential of novel cryptic proteins resulting from TAR DNA-binding protein 43 (TDP-43) dysfunction as markers of TDP-43 pathology in neurodegenerative diseases.
Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Esclerose Lateral Amiotrófica/metabolismoRESUMO
Motor neurons (MNs) constitute an ancient cell type targeted by multiple adult-onset diseases. It is therefore important to define the molecular makeup of adult MNs in animal models and extract organizing principles. Here, we generate a comprehensive molecular atlas of adult Caenorhabditis elegans MNs and a searchable database. Single-cell RNA sequencing of 13,200 cells reveals that ventral nerve cord MNs cluster into 29 molecularly distinct subclasses. Extending C. elegans Neuronal Gene Expression Map and Network (CeNGEN) findings, all MN subclasses are delineated by distinct expression codes of either neuropeptide or transcription factor gene families. Strikingly, combinatorial codes of homeodomain transcription factor genes succinctly delineate adult MN diversity in both C. elegans and mice. Further, molecularly defined MN subclasses in C. elegans display distinct patterns of connectivity. Hence, our study couples the connectivity map of the C. elegans motor circuit with a molecular atlas of its constituent MNs and uncovers organizing principles and conserved molecular codes of adult MN diversity.
Assuntos
Proteínas de Caenorhabditis elegans , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Neurônios Motores/metabolismo , Regulação da Expressão Gênica , Proteínas de Caenorhabditis elegans/metabolismoRESUMO
In frontotemporal dementia and amyotrophic lateral sclerosis, the RNA-binding protein TDP-43 is depleted from the nucleus. TDP-43 loss leads to cryptic exon inclusion but a role in other RNA processing events remains unresolved. Here, we show that loss of TDP-43 causes widespread changes in alternative polyadenylation, impacting expression of disease-relevant genes (e.g., ELP1, NEFL, and TMEM106B) and providing evidence that alternative polyadenylation is a new facet of TDP-43 pathology.
RESUMO
In frontotemporal lobar degeneration (FTLD), pathological protein aggregation is associated with a decline in human-specialized social-emotional and language functions. Most disease protein aggregates contain either TDP-43 (FTLD-TDP) or tau (FTLD-tau). Here, we explored whether FTLD targets brain regions that express genes containing human accelerated regions (HARs), conserved sequences that have undergone positive selection during recent human evolution. To this end, we used structural neuroimaging from patients with FTLD and normative human regional transcriptomic data to identify genes expressed in FTLD-targeted brain regions. We then integrated primate comparative genomic data to test our hypothesis that FTLD targets brain regions expressing recently evolved genes. In addition, we asked whether genes expressed in FTLD-targeted brain regions are enriched for genes that undergo cryptic splicing when TDP-43 function is impaired. We found that FTLD-TDP and FTLD-tau subtypes target brain regions that express overlapping and distinct genes, including many linked to neuromodulatory functions. Genes whose normative brain regional expression pattern correlated with FTLD cortical atrophy were strongly associated with HARs. Atrophy-correlated genes in FTLD-TDP showed greater overlap with TDP-43 cryptic splicing genes compared with atrophy-correlated genes in FTLD-tau. Cryptic splicing genes were enriched for HAR genes, and vice versa, but this effect was due to the confounding influence of gene length. Analyses performed at the individual-patient level revealed that the expression of HAR genes and cryptically spliced genes within putative regions of disease onset differed across FTLD-TDP subtypes. Overall, our findings suggest that FTLD targets brain regions that have undergone recent evolutionary specialization and provide intriguing potential leads regarding the transcriptomic basis for selective vulnerability in distinct FTLD molecular-anatomical subtypes.
RESUMO
Motor neurons (MNs) constitute an ancient cell type targeted by multiple adult-onset diseases. It is therefore important to define the molecular makeup of adult MNs in animal models and extract organizing principles. Here, we generated a comprehensive molecular atlas of adult Caenorhabditis elegans MNs and a searchable database (http://celegans.spinalcordatlas.org). Single-cell RNA-sequencing of 13,200 cells revealed that ventral nerve cord MNs cluster into 29 molecularly distinct subclasses. All subclasses are delineated by unique expression codes of either neuropeptide or transcription factor gene families. Strikingly, we found that combinatorial codes of homeodomain transcription factor genes define adult MN diversity both in C. elegans and mice. Further, molecularly defined MN subclasses in C. elegans display distinct patterns of connectivity. Hence, our study couples the connectivity map of the C. elegans motor circuit with a molecular atlas of its constituent MNs, and uncovers organizing principles and conserved molecular codes of adult MN diversity.
RESUMO
Background and Objectives: Single nucleotide variants near TMEM106B associate with risk of frontotemporal lobar dementia with TDP-43 inclusions (FTLD-TDP) and Alzheimer's disease (AD) in genome-wide association studies (GWAS), but the causal variant at this locus remains unclear. Here we asked whether a novel structural variant on TMEM106B is the causal variant. Methods: An exploratory analysis identified structural variants on neurodegeneration-related genes. Subsequent analyses focused on an Alu element insertion on the 3'UTR of TMEM106B. This study included data from longitudinal aging and neurogenerative disease cohorts at Stanford University, case-control cohorts in the Alzheimer's Disease Sequencing Project (ADSP), and expression and proteomics data from Washington University in St. Louis (WUSTL). 432 individuals from two Stanford aging cohorts were whole-genome long-read and short-read sequenced. 16,906 samples from ADSP were short-read sequenced. Genotypes, transcriptomics, and proteomics data were available in 1,979 participants from an aging and dementia cohort at WUSTL. Selection criteria were specific to each cohort. In primary analyses, the linkage disequilibrium between the TMEM106B locus variants in the FTLD-TDP GWAS and the 3'UTR insertion was estimated. We then estimated linkage by ancestry in the ADSP and evaluated the effect of the TMEM106B lead variant on mRNA and protein levels. Results: The primary analysis included 432 participants (52.5% females, age range 45-92 years old). We identified a 316 bp Alu insertion overlapping the TMEM106B 3'UTR tightly linked with top GWAS variants rs3173615(C) and rs1990622(A). In ADSP European-ancestry participants, this insertion is in equivalent linkage with rs1990622(A) (R2=0.962, D'=0.998) and rs3173615(C) (R2=0.960, D'=0.996). In African-ancestry participants, the insertion is in stronger linkage with rs1990622(A) (R2=0.992, D'=0.998) than with rs3173615(C) (R2=0.811, D'=0.994). In public datasets, rs1990622 was consistently associated with TMEM106B protein levels but not with mRNA expression. In the WUSTL dataset, rs1990622 is associated with TMEM106B protein levels in plasma and cerebrospinal fluid, but not with TMEM106B mRNA expression. Discussion: We identified a novel Alu element insertion in the 3'UTR of TMEM106B in tight linkage with the lead FTLD-TDP risk variant. The lead variant is associated with TMEM106B protein levels, but not expression. The 3'UTR insertion is a lead candidate for the causal variant at this complex locus, pending confirmation with functional studies.
RESUMO
Biomolecular condensation underlies the biogenesis of an expanding array of membraneless assemblies, including stress granules (SGs), which form under a variety of cellular stresses. Advances have been made in understanding the molecular grammar of a few scaffold proteins that make up these phases, but how the partitioning of hundreds of SG proteins is regulated remains largely unresolved. While investigating the rules that govern the condensation of ataxin-2, an SG protein implicated in neurodegenerative disease, we unexpectedly identified a short 14 aa sequence that acts as a condensation switch and is conserved across the eukaryote lineage. We identify poly(A)-binding proteins as unconventional RNA-dependent chaperones that control this regulatory switch. Our results uncover a hierarchy of cis and trans interactions that fine-tune ataxin-2 condensation and reveal an unexpected molecular function for ancient poly(A)-binding proteins as regulators of biomolecular condensate proteins. These findings may inspire approaches to therapeutically target aberrant phases in disease.
Assuntos
Ataxina-2 , Doenças Neurodegenerativas , Humanos , Ataxina-2/genética , Proteína I de Ligação a Poli(A) , Doenças Neurodegenerativas/metabolismo , Condensados BiomolecularesRESUMO
Positively charged repeat peptides are emerging as key players in neurodegenerative diseases. These peptides can perturb diverse cellular pathways but a unifying framework for how such promiscuous toxicity arises has remained elusive. We used mass-spectrometry-based proteomics to define the protein targets of these neurotoxic peptides and found that they all share similar sequence features that drive their aberrant condensation with these positively charged peptides. We trained a machine learning algorithm to detect such sequence features and unexpectedly discovered that this mode of toxicity is not limited to human repeat expansion disorders but has evolved countless times across the tree of life in the form of cationic antimicrobial and venom peptides. We demonstrate that an excess in positive charge is necessary and sufficient for this killer activity, which we name 'polycation poisoning'. These findings reveal an ancient and conserved mechanism and inform ways to leverage its design rules for new generations of bioactive peptides.
RESUMO
Hexanucleotide repeat expansion (HRE) within C9orf72 is the most common genetic cause of frontotemporal dementia (FTD). Thalamic atrophy occurs in both sporadic and familial FTD but is thought to distinctly affect HRE carriers. Separately, emerging evidence suggests widespread derepression of transposable elements (TEs) in the brain in several neurodegenerative diseases, including C9orf72 HRE-mediated FTD (C9-FTD). Whether TE activation can be measured in peripheral blood and how the reduction in peripheral C9orf72 expression observed in HRE carriers relates to atrophy and clinical impairment remain unknown. We used FreeSurfer software to assess the effects of C9orf72 HRE and clinical diagnosis (n = 78 individuals, male and female) on atrophy of thalamic nuclei. We also generated a novel, human, whole-blood RNA-sequencing dataset to determine the relationships among peripheral C9orf72 expression, TE activation, thalamic atrophy, and clinical severity (n = 114 individuals, male and female). We confirmed global thalamic atrophy and reduced C9orf72 expression in HRE carriers. Moreover, we identified disproportionate atrophy of the right mediodorsal lateral nucleus in HRE carriers and showed that C9orf72 expression associated with clinical severity, independent of thalamic atrophy. Strikingly, we found global peripheral activation of TEs, including the human endogenous LINE-1 element L1HS L1HS levels were associated with atrophy of multiple pulvinar nuclei, a thalamic region implicated in C9-FTD. Integration of peripheral transcriptomic and neuroimaging data from human HRE carriers revealed atrophy of specific thalamic nuclei, demonstrated that C9orf72 levels relate to clinical severity, and identified marked derepression of TEs, including L1HS, which predicted atrophy of FTD-relevant thalamic nuclei.SIGNIFICANCE STATEMENT Pathogenic repeat expansion in C9orf72 is the most frequent genetic cause of FTD and amyotrophic lateral sclerosis (ALS; C9-FTD/ALS). The clinical, neuroimaging, and pathologic features of C9-FTD/ALS are well characterized, whereas the intersections of transcriptomic dysregulation and brain structure remain largely unexplored. Herein, we used a novel radiogenomic approach to examine the relationship between peripheral blood transcriptomics and thalamic atrophy, a neuroimaging feature disproportionately impacted in C9-FTD/ALS. We confirmed reduction of C9orf72 in blood and found broad dysregulation of transposable elements-genetic elements typically repressed in the human genome-in symptomatic C9orf72 expansion carriers, which associated with atrophy of thalamic nuclei relevant to FTD. C9orf72 expression was also associated with clinical severity, suggesting that peripheral C9orf72 levels capture disease-relevant information.
Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Masculino , Feminino , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Proteína C9orf72/genética , Elementos de DNA Transponíveis , AtrofiaRESUMO
In this issue of Molecular Cell, Gropp et al. identify how the cellular background affects whether or not the Huntington's disease protein will form toxic pathological aggregates, providing insight into selective neuronal vulnerability in neurodegenerative disease.