Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Contemp Clin Trials ; 137: 107423, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38151173

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the development and continued growth of multiple cysts in the kidneys leading to ultimate loss of kidney function in most patients. Currently, tolvaptan is the only agency approved therapy to slow kidney disease advancement in patients with faster progressing disease underscoring the need for additional ADPKD therapies suitable for all patients. We previously showed that pravastatin slowed kidney disease progression in children and young adults with ADPKD. However, the intervention has not been tested in an adult cohort. AIMS: The aim of the study is to conduct a single center, randomized, placebo-controlled double-blinded clinical trial to determine the efficacy of pravastatin on slowing kidney disease progression in adult patients with early stage ADPKD. METHODS: One hundred and fifty adult patients with ADPKD and eGFR ≥60 ml/min/1.73m2 will be enrolled in the study and randomized to receive 40 mg/day pravastatin or placebo for a period of 2-years. OUTCOMES: The primary outcome of the trial is change in total kidney volume assessed by magnetic resonance imaging (MRI). Secondary outcomes include change in kidney function by iothalamate GFR and renal blood flow and markers of inflammation and oxidative stress. CONCLUSION: This study will assess the kidney therapeutic benefits of pravastatin in adult patients with ADPKD. The recruitment goal of 150 subjects was attained and the study is ongoing. REGISTRATION: This study is registered on Clinicaltrials.gov # NCT03273413.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Rim Policístico Autossômico Dominante , Adulto Jovem , Criança , Humanos , Adulto , Rim Policístico Autossômico Dominante/diagnóstico por imagem , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/complicações , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Pravastatina/uso terapêutico , Método Duplo-Cego , Progressão da Doença , Taxa de Filtração Glomerular
2.
JCI Insight ; 8(12)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37345660

RESUMO

Innate and adaptive immune cells modulate the severity of autosomal dominant polycystic kidney disease (ADPKD), a common kidney disease with inadequate treatment options. ADPKD has parallels with cancer, in which immune checkpoint inhibitors have been shown to reactivate CD8+ T cells and slow tumor growth. We have previously shown that in PKD, CD8+ T cell loss worsens disease. This study used orthologous early-onset and adult-onset ADPKD models (Pkd1 p.R3277C) to evaluate the role of immune checkpoints in PKD. Flow cytometry of kidney cells showed increased levels of programmed cell death protein 1 (PD-1)/cytotoxic T lymphocyte associated protein 4 (CTLA-4) on T cells and programmed cell death ligand 1 (PD-L1)/CD80 on macrophages and epithelial cells in Pkd1RC/RC mice versus WT, paralleling disease severity. PD-L1/CD80 was also upregulated in ADPKD human cells and patient kidney tissue versus controls. Genetic PD-L1 loss or treatment with an anti-PD-1 antibody did not impact PKD severity in early-onset or adult-onset ADPKD models. However, treatment with anti-PD-1 plus anti-CTLA-4, blocking 2 immune checkpoints, improved PKD outcomes in adult-onset ADPKD mice; neither monotherapy altered PKD severity. Combination therapy resulted in increased kidney CD8+ T cell numbers/activation and decreased kidney regulatory T cell numbers correlative with PKD severity. Together, our data suggest that immune checkpoint activation is an important feature of and potential novel therapeutic target in ADPKD.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Adulto , Humanos , Animais , Camundongos , Antígeno B7-H1 , Rim , Terapia Combinada , Antígeno B7-1
3.
Kidney Int Rep ; 8(5): 989-1001, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37180499

RESUMO

Introduction: The course of autosomal dominant polycystic kidney disease (ADPKD) varies greatly among affected individuals, necessitating natural history studies to characterize the determinants and effects of disease progression. Therefore, we conducted an observational, longitudinal study (OVERTURE; NCT01430494) of patients with ADPKD. Methods: This prospective study enrolled a large international population (N = 3409) encompassing a broad spectrum of ages (12-78 years), chronic kidney disease (CKD) stages (G1-G5), and Mayo imaging classifications (1A-1E). Outcomes included kidney function, complications, quality of life, health care resource utilization, and work productivity. Results: Most subjects (84.4%) completed ≥12 months of follow-up. Consistent with earlier findings, each additional l/m of height-adjusted total kidney volume (htTKV) on magnetic resonance imaging (MRI) was associated with worse outcomes, including lower estimated glomerular filtration rate (eGFR) (regression coefficient 17.02, 95% confidence interval [CI] 15.94-18.11) and greater likelihood of hypertension (odds ratio [OR] 1.25, 95% CI 1.17-1.34), kidney pain (OR 1.22, 95% CI 1.11-1.33), and hematuria (OR 1.35, 95% CI 1.21-1.51). Greater baseline htTKV was also associated with worse patient-reported health-related quality of life (e.g., ADPKD Impact Scale physical score, regression coefficient 1.02, 95% CI 0.65-1.39), decreased work productivity (e.g., work days missed, regression coefficient 0.55, 95% CI 0.18-0.92), and increased health care resource utilization (e.g., hospitalizations, OR 1.48, 95% CI 1.33-1.64) during follow-up. Conclusion: Although limited by a maximum 3-year duration of follow-up, this observational study characterized the burden of ADPKD in a broad population and indicated the predictive value of kidney volume for outcomes other than kidney function.

4.
Am J Nephrol ; 54(5-6): 165-174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37231790

RESUMO

INTRODUCTION: Cerebrovascular dysfunction, characterized by increased brain pulsatile flow, reduced cerebrovascular reactivity, and cerebral hypoperfusion precedes the onset of dementia and is linked to cognitive dysfunction. Autosomal dominant polycystic kidney disease (ADPKD) may increase the risk of dementia, and intracranial aneurysms are more prevalent in ADPKD patients. However, cerebrovascular function has not been previously characterized in patients with ADPKD. METHODS: Using transcranial Doppler, we compared middle cerebral artery (MCA) pulsatility index (PI, cerebrovascular stiffness) and MCA blood velocity response to hypercapnia (normalized for blood pressure and end-tidal CO2, cerebrovascular reactivity) in patients with early-stage ADPKD versus age-matched healthy controls. We also administered the NIH cognitive toolbox (cognitive function) and measured carotid-femoral pulse-wave velocity (PWV, aortic stiffness). RESULTS: Fifteen participants with ADPKD (9F, 27 ± 4 yrs, eGFR: 106 ± 22 mL/min/1.73 m2) were compared to 15 healthy controls (8F, 29 ± 4 yrs, eGFR: 109 ± 14 mL/min/1.73 m2). MCA PI was unexpectedly lower in ADPKD (0.71 ± 0.07) versus controls (0.82 ± 0.09 AU; p < 0.001); however, normalized MCA blood velocity in response to hypercapnia did not differ between groups (2.0 ± 1.2 vs. 2.1 ± 0.8 %Δ/mm Hg; p = 0.85). Lower MCA PI was associated with a lower crystalized composite score (cognition), which persisted after adjustment for age, sex, eGFR, and education (ß = 0.58, p = 0.007). There was no association of MCA PI with carotid-femoral PWV (r = 0.01, p = 0.96), despite greater carotid-femoral PWV in ADPKD, suggesting MCA PI reflects vascular properties other than arterial stiffness (such as low wall shear stress) in ADPKD. DISCUSSION/CONCLUSION: MCA PI is lower in patients with ADPKD. Follow-up research on this observation is merited as low PI has been associated with intracranial aneurysm in other populations.


Assuntos
Demência , Rim Policístico Autossômico Dominante , Rigidez Vascular , Humanos , Rim Policístico Autossômico Dominante/complicações , Hipercapnia , Pressão Sanguínea/fisiologia , Cognição/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia
5.
JCI Insight ; 8(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36422996

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD), the most common monogenic nephropathy, is characterized by phenotypic variability that exceeds genic effects. Dysregulated metabolism and immune cell function are key disease modifiers. The tryptophan metabolites, kynurenines, produced through indoleamine 2,3-dioxygenase 1 (IDO1), are known immunomodulators. Here, we study the role of tryptophan metabolism in PKD using an orthologous disease model (C57BL/6J Pkd1RC/RC). We found elevated kynurenine and IDO1 levels in Pkd1RC/RC kidneys versus wild type. Further, IDO1 levels were increased in ADPKD cell lines. Genetic Ido1 loss in Pkd1RC/RC animals resulted in reduced PKD severity, as measured by cystic index and percentage kidney weight normalized to body weight. Consistent with an immunomodulatory role of kynurenines, Pkd1RC/RC;Ido1-/- mice presented with significant changes in the cystic immune microenvironment (CME) versus controls. Kidney macrophage numbers decreased and CD8+ T cell numbers increased, both known PKD modulators. Also, pharmacological IDO1 inhibition in Pkd1RC/RC mice and kidney-specific Pkd2-knockout mice with rapidly progressive PKD resulted in less severe PKD versus controls, with changes in the CME similar to those in the genetic model. Our data suggest that tryptophan metabolism is dysregulated in ADPKD and that its inhibition results in changes to the CME and slows disease progression, making IDO1 a therapeutic target for ADPKD.


Assuntos
Rim Policístico Autossômico Dominante , Triptofano , Animais , Camundongos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Camundongos Endogâmicos C57BL , Cinurenina , Camundongos Knockout , Triptofano Oxigenase/genética
6.
J Nephrol ; 36(1): 83-91, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35867237

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is a common hereditary disorder, characterized by kidney cyst formation. A major pathological feature of ADPKD is the development of interstitial inflammation. Due to its role in inflammation and oxidative stress, tryptophan metabolism and related kynurenines may have relevance in ADPKD. METHODS: Data were collected from a well-characterized longitudinal cohort of pediatric and adult patients with ADPKD and compared to age-matched healthy subjects. To evaluate the role of kynurenines in ADPKD severity and progression, we investigated their association with height-corrected total kidney volume (HtTKV) and kidney function (estimated glomerular filtration rate (eGFR)). Key tryptophan metabolites were measured in plasma using a validated liquid chromatography-mass spectrometry assay. RESULTS: There was a significant accumulation of kynurenine and kynurenic acid (KYNA) in children and adults with ADPKD as compared to healthy subjects. Downstream kynurenines continued to accumulate in adults with ADPKD concurrent with the increase of inflammatory markers IL-6 and MCP-1. Both markers remained unchanged in ADPKD as compared to healthy children, suggesting alternate pathways responsible for the observed rise in kynurenine and KYNA. KYNA and kynurenine/tryptophan positively associated with disease severity (HtTKV or eGFR) in patients with ADPKD. After Bonferroni adjustment, baseline kynurenines did not associate with disease progression (yearly %change in HtTKV or yearly change in eGFR) in this limited number of patients with ADPKD. CONCLUSION: Kynurenine metabolism seems dysregulated in ADPKD as compared to healthy subjects. Inhibition of kynurenine production by inhibition of main pathway enzymes could present a novel way to reduce the progression of ADPKD.


Assuntos
Rim Policístico Autossômico Dominante , Adulto , Humanos , Criança , Cinurenina/metabolismo , Triptofano/metabolismo , Progressão da Doença , Rim , Taxa de Filtração Glomerular , Inflamação
7.
Am J Nephrol ; 53(4): 264-272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35263737

RESUMO

INTRODUCTION: Autosomal dominant polycystic kidney disease (ADPKD) is a commonly inherited disorder characterized by renal cyst formation. A major pathological feature of ADPKD is the development of interstitial inflammation. The endocannabinoid (EC) system is present in the kidney and has recently emerged as an important player in inflammation and the pathogenesis of progressive kidney disease. METHODS: Data on ECs were collected using a validated mass spectrometry assay from a well-characterized cohort of 102 ADPKD patients (at baseline and after 2- and 4 years on standard vs. rigorous blood-pressure control) and compared to 100 healthy subjects. RESULTS: Compared to healthy individuals, we found higher interleukins-6 and -1b as well as reduced plasma levels of anandamide (AEA), 2-arachidonoyl-glycerol (2-AG), and their congeners in ADPKD patients. Baseline AEA concentration negatively associated with the progression of ADPKD as expressed by the yearly percent change in height-corrected total kidney volume and positively with the yearly change in renal function (measured as estimated glomerular filtration rate, ΔeGFR). AEA analog palmitoylethanolamide (PEA) is also associated positively with the yearly change in eGFR. DISCUSSION AND CONCLUSION: The results of the present study suggest that ADPKD patients present with lower levels of ECs and that reestablishing the normality of the renal EC system via augmentation of AEA, PEA, and 2-AG levels, either through the increase of their synthesis or through a reduction of their degradation, could be beneficial and may present a promising therapeutic target in said patients.


Assuntos
Rim Policístico Autossômico Dominante , Progressão da Doença , Endocanabinoides , Feminino , Taxa de Filtração Glomerular , Humanos , Inflamação/metabolismo , Rim/patologia , Masculino , Rim Policístico Autossômico Dominante/patologia
9.
Am J Physiol Renal Physiol ; 322(3): F258-F267, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35037466

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease and affects 1 in 1,000 individuals. There is accumulating evidence suggesting that there are shared cellular mechanisms responsible for cystogenesis in human and murine PKD and that reprogramming of metabolism is a key disease feature. In this study, we used a targeted metabolomics approach in an orthologous mouse model of PKD (Pkd1RC/RC) to investigate the metabolic modifications a cystic kidney undergoes during disease progression. Using the Kyoto Encyclopedia of Genes and Genomes pathway database, we identified several biologically relevant metabolic pathways that were altered early in this disease (in 3-mo-old Pkd1RC/RC mice), the most highly represented being arginine biosynthesis and metabolism and tryptophan and phenylalanine metabolism. During the next 6 mo of disease progression, multiple uremic solutes accumulated in the kidney of cystic mice, including several established markers of oxidative stress and endothelial dysfunction (allantoin, asymmetric dimethylarginine, homocysteine, malondialdehyde, methionine sulfoxide, and S-adenosylhomocysteine). Levels of kynurenines and polyamines were also augmented in kidneys of Pkd1RC/RC versus wild-type mice, as were the levels of bacteria-produced indoles, whose increase within PKD kidneys suggests microbial dysbiosis. In summary, we confirmed previously published and identified novel metabolic markers and pathways of PKD progression that may prove helpful for diagnosis and monitoring of cystic kidney disease in patients. Furthermore, they provide targets for novel therapeutic approaches that deserve further study and hint toward currently understudied pathomechanisms.NEW & NOTEWORTHY This report delineates the evolution of metabolic changes occurring during autosomal dominant polycystic kidney disease (ADPKD) progression. Using an orthologous model, we performed kidney metabolomics and confirmed dysregulation of metabolic pathways previously found altered in nonorthologous or rapidly-progressive PKD models. Importantly, we identified novel alterations, including augmentation of kynurenines, polyamines, and indoles, suggesting increased inflammation and microbial dysbiosis that provide insights into PKD pathomechanisms and may prove helpful for diagnosing, monitoring, and treating ADPKD.


Assuntos
Metabolismo Energético , Rim/metabolismo , Mutação , Rim Policístico Autossômico Dominante/metabolismo , Canais de Cátion TRPP/genética , Animais , Bases de Dados Genéticas , Modelos Animais de Doenças , Progressão da Doença , Predisposição Genética para Doença , Metaboloma , Metabolômica , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fenótipo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/fisiopatologia , Espectrometria de Massas em Tandem , Fatores de Tempo
10.
JBMR Plus ; 5(4): e10464, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33869988

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of chronic kidney disease (CKD) and leads to a specific type of bone disease. The primary cilium is a major cellular organelle implicated in the pathophysiology of ADPKD caused by mutations in polycystin-1 (PKD1) and polycystin-2 (PKD2). In this study, for the first time, cilia were characterized in primary preosteoblasts isolated from patients with ADPKD. All patients with ADPKD had low bone turnover and primary osteoblasts were also obtained from patients with non-ADPKD CKD with low bone turnover. Image-based immunofluorescence assays analyzed cilia using standard markers, pericentrin, and acetylated-α-tubulin, where cilia induction and elongation were chosen as relevant endpoints for these initial investigations. Osteoblastic activity was examined by measuring alkaline phosphatase levels and mineralized matrix deposition rates. It was found that primary cilia can be visualized in patient-derived osteoblasts and respond to elongation treatments. Compared with control cells, ADPKD osteoblasts displayed abnormal cilia elongation that was significantly more responsive in cells with PKD2 nontruncating mutations and PKD1 mutations. In contrast, non-ADPKD CKD osteoblasts were unresponsive and had shorter cilia. Finally, ADPKD osteoblasts showed increased rates of mineralized matrix deposition compared with non-ADPKD CKD. This work represents the first study of cilia in primary human-derived osteoblasts from patients with CKD and patients with ADPKD who have normal kidney function, offering new insights as bone disease phenotypes are not well recapitulated in animal models. These data support a model whereby altered cilia occurs in PKD-mutated osteoblasts, and that ADPKD-related defects in bone cell activity and mineralization are distinct from adynamic bone disease from patients with non-ADPKD CKD. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

11.
Sci Rep ; 11(1): 6629, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758231

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most commonly inherited kidney disease. Although children with ADPKD show normal renal function, cyst development is already occurring. In this study, we aimed to identify markers and associated molecular pathways of disease progression in children and young adults with ADPKD. Plasma samples were collected during a 3-year randomized, double-blind, placebo-controlled, phase III clinical trial that was designed to test the efficacy of pravastatin on slowing down ADPKD progression in pediatric patients. Samples from 58 patients were available at baseline and at the 3-year endpoint of the study, respectively. Furthermore, plasma samples from 98 healthy children were used as controls. Metabolomic analysis was performed using liquid chromatography-tandem mass spectrometry and differences in metabolic profiles over time and within study groups were evaluated. While pravastatin therapy led to a decrease in a percent change of total kidney volume (HtTKV) in ADPKD patients, it had minimal effects on metabolite changes. Oxidative stress, endothelial dysfunction, inflammation and immune response were the most affected signaling pathways that distinguished healthy from diseased children. Pathway analysis revealed that metabolites in the arginine metabolism (urea and nitric oxide cycles), asparagine and glutamine metabolism, in the methylation cycle and kynurenine pathway were significantly changed between healthy and children with ADPDK and continued to diverge from the control levels while the disease progressed. Detected metabolite changes were primarily governed by disease progression, and less by pravastatin treatment. Identified metabolic pathways, from arginine and asparagine to kynurenine metabolism could present therapeutic targets and should be further investigated for potential to treat ADPKD progression at an early stage.


Assuntos
Biomarcadores , Metaboloma , Metabolômica , Rim Policístico Autossômico Dominante/metabolismo , Adolescente , Estudos de Casos e Controles , Criança , Estudos Transversais , Feminino , Humanos , Masculino , Metabolômica/métodos , Rim Policístico Autossômico Dominante/sangue , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/tratamento farmacológico , Pravastatina/uso terapêutico , Resultado do Tratamento , Adulto Jovem
12.
Curr Hypertens Rev ; 17(3): 228-237, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32807060

RESUMO

BACKGROUND: Epidemiological studies have suggested that elevated serum uric acid may contribute to the progression of chronic kidney disease. However, no large prospective study has examined whether hyperuricemia is an independent risk factor for the progression of autosomal dominant polycystic kidney disease (ADPKD). METHODS: We measured uric acid in stored serum samples from the 2-year study visit of 671 participants from the HALT PKD multicenter trials. Participants were categorized according to uric acid tertiles. For Study A (participants aged 15-49 years with preserved kidney function, n=350), we used linear mixed effects models to examine the association between uric acid and repeated measures of height-adjusted total kidney volume (htTKV), the primary outcome for Study A. For Study B (participants aged 18-64 with decreased kidney function, n=321), we used Cox proportional hazards models to assess the hazard for the combined endpoint of 50% loss in estimated glomerular filtration rate (eGFR), end-stage kidney disease (ESKD), or death, the primary outcome for Study B. To assess the association of uric acid with the slope of eGFR decline (secondary outcome of HALT A and B), we used linear mixed effects models for the combined population of Study A and B. RESULTS: In the unadjusted model, the annual change in htTKV was 2.7% higher in the highest uric acid tertile compared to the lowest (p<0.001), but this difference became insignificant after adjustment for gender. Men had faster TKV growth than women (p<0.001). There was no difference in eGFR decline between the 3 uric acid tertiles. Hazard ratios for the clinical endpoint were 2.9 (95% confidence interval, 1.9-4.4) and 1.8 (1.1-2.8) respectively in the high and medium uric acid groups in unadjusted and partially adjusted models (p<0.001), but the significance was lost after adjustment for baseline eGFR. Results were similar when uric acid was examined as a continuous variable. CONCLUSION: Elevated serum uric acid is not an independent risk factor for disease progression in ADPKD.


Assuntos
Rim Policístico Autossômico Dominante , Ácido Úrico , Progressão da Doença , Feminino , Taxa de Filtração Glomerular , Humanos , Rim , Masculino , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/epidemiologia , Estudos Prospectivos
14.
Kidney Int ; 94(6): 1127-1140, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30249452

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent inherited nephropathy. To date, therapies alleviating the disease have largely focused on targeting abnormalities in renal epithelial cell signaling. ADPKD has many hallmarks of cancer, where targeting T cells has brought novel therapeutic interventions. However, little is known about the role and therapeutic potential of T cells in ADPKD. Here, we used an orthologous ADPKD model, Pkd1 p.R3277C (RC), to begin to define the role of T cells in disease progression. Using flow cytometry, we found progressive increases in renal CD8+ and CD4+ T cells, correlative with disease severity, but with selective activation of CD8+ T cells. By immunofluorescence, T cells specifically localized to cystic lesions and increased levels of T-cell recruiting chemokines (CXCL9/CXCL10) were detected by qPCR/in situ hybridization in the kidneys of mice, patients, and ADPKD epithelial cell lines. Importantly, immunodepletion of CD8+ T cells from one to three months in C57Bl/6 Pkd1RC/RC mice resulted in worsening of ADPKD pathology, decreased apoptosis, and increased proliferation compared to IgG-control, consistent with a reno-protective role of CD8+ T cells. Thus, our studies suggest a functional role for T cells, specifically CD8+ T cells, in ADPKD progression. Hence, targeting this pathway using immune-oncology agents may represent a novel therapeutic approach for ADPKD.


Assuntos
Imunidade Adaptativa , Linfócitos T CD8-Positivos/microbiologia , Rim Policístico Autossômico Dominante/imunologia , Animais , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular , Modelos Animais de Doenças , Progressão da Doença , Células Epiteliais , Feminino , Humanos , Imunoterapia/métodos , Rim/citologia , Rim/imunologia , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Dominante/terapia , Transdução de Sinais/imunologia , Canais de Cátion TRPP/genética
15.
Kidney Int Rep ; 2(3): 442-450, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-29142971

RESUMO

INTRODUCTION: Autosomal dominant polycystic kidney disease is the most common hereditary kidney disease. TKV is a promising imaging biomarker for tracking and predicting the natural history of autosomal dominant polycystic kidney disease. The prognostic value of TKV was evaluated, in combination with age and eGFR, for the outcomes of 30% decline in eGFR and progression to ESRD. Observational data including 2355 patients with TKV measurements were available. METHODS: Multivariable Cox models were developed to assess the prognostic value of age, TKV, height-adjusted TKV, eGFR, sex, race, and genotype for the probability of a 30% decline in eGFR or ESRD. RESULTS: TKV was the most important prognostic term for 30% decline in eGFR in autosomal dominant polycystic kidney disease patients with and without preserved baseline eGFR. For a 40-year-old subject with preserved eGFR (70 ml/min per 1.73 m2), the adjusted hazard ratios for a 30% decline in eGFR were 1.86 (95% CI, 1.65-2.10) for a 2-fold larger TKV (600 vs. 1200 ml) and 2.68 (95% CI, 2.22-3.24) for a 3-fold larger TKV (600 vs. 1800 ml), respectively. Hazard ratios for progression to ESRD for 2- and 3-fold larger TKV were 1.72 (95% CI, 1.49-1.99) and 2.36 (95% CI, 1.88-2.97), respectively. DISCUSSION: The capability to predict 30% decline in eGFR is a novel aspect of this study. TKV was formally qualified, both by FDA and EMA, as a prognostic enrichment biomarker for selecting patients at high risk for a progressive decline in renal function for inclusion in interventional clinical trials.

16.
Kidney Int Rep ; 2(3): 451-460, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-29142972

RESUMO

INTRODUCTION: Total kidney volume (TKV) is a promising imaging biomarker for tracking and predicting the natural history of patients with autosomal dominant polycystic kidney disease. METHODS: A drug development tool was developed by linking longitudinal TKV measurements to the probability of a 30% decline of estimated glomerular filtration rate (eGFR) or end-stage renal disease. Drug development tools were developed based on observational data collected over multiple decades for an eGFR decline and end-stage renal disease in 641 and 866 patients with autosomal dominant polycystic kidney disease, respectively. RESULTS: The statistical association between predicted TKV at the time of a 30% decline of eGFR and that at the time of end-stage renal disease were both highly significant (P < 0.0001). The drug development tool was applied to demonstrate the utility of trial enrichment according to prespecified baseline TKV, age, and eGFR as enrollment criteria in hypothetical clinical trials. Patients with larger TKV (≥1000 ml) displayed steeper slopes of hazard, which translated into a higher risk of a 30% decline of eGFR within each baseline age (< or ≥40 years) or baseline eGFR (< or ≥50 ml/min per 1.73 m2) subgroups. DISCUSSION: These results suggest that, when eGFR is preserved, patients with larger TKV are more likely to progress to a 30% decline of eGFR within the course of a clinical trial, whereas eGFR and age displayed limited predictive value of disease progression in early disease. Pharmaceutical sponsors and academic investigators are encouraged to prospectively employ the above drug development tool to optimize trial designs in patients with autosomal dominant polycystic kidney disease.

17.
Am J Kidney Dis ; 66(4): 583-90, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26088508

RESUMO

Data standards provide a structure for consistent understanding and exchange of data and enable the integration of data across studies for integrated analysis. There is no data standard applicable to kidney disease. We describe the process for development of the first-ever Clinical Data Interchange Standards Consortium (CDISC) data standard for autosomal dominant polycystic kidney disease (ADPKD) by the Polycystic Kidney Disease Outcomes Consortium (PKDOC). Definition of common data elements and creation of ADPKD-specific data standards from case report forms used in long-term ADPKD registries, an observational cohort (Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease [CRISP] 1 and 2), and a randomized clinical trial (Halt Progression of Polycystic Kidney Disease [HALT-PKD]) are described in detail. This data standard underwent extensive review, including a global public comment period, and is now available online as the first PKD-specific data standard (www.cdisc.org/therapeutic). Submission of clinical trial data that use standard data structures and terminology will be required for new electronic submissions to the US Food and Drug Administration for all disease areas by the end of 2016. This data standard will allow for the mapping and pooling of available data into a common data set in addition to providing a foundation for future studies, data sharing, and long-term registries in ADPKD. This data set will also be used to support the regulatory qualification of total kidney volume as a prognostic biomarker for use in clinical trials. The availability of consensus data standards for ADPKD has the potential to facilitate clinical trial initiation and increase sharing and aggregation of data across observational studies and among completed clinical trials, thereby improving our understanding of disease progression and treatment.


Assuntos
Bases de Dados Factuais/normas , Rim Policístico Autossômico Dominante/terapia , Guias de Prática Clínica como Assunto/normas , Consenso , Progressão da Doença , Feminino , Taxa de Filtração Glomerular/fisiologia , Humanos , Masculino , Rim Policístico Autossômico Dominante/diagnóstico , Resultado do Tratamento , Estados Unidos
18.
Am J Physiol Renal Physiol ; 307(11): F1198-206, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25234311

RESUMO

Cardiovascular disease (CVD) is the leading cause of premature mortality in ADPKD patients. The aim was to identify potential serum biomarkers associated with the severity of ADPKD. Serum samples from a homogenous group of 61 HALT study A ADPKD patients [early disease group with estimated glomerular filtration rate (eGFR) >60 ml·min(-1)·1.73 m(-2)] were compared with samples from 49 patients from the HALT study B group with moderately advanced disease (eGFR 25-60 ml·min(-1)·1.73 m(-2)). Targeted tandem-mass spectrometry analysis of markers of endothelial dysfunction and oxidative stress was performed and correlated with eGFR and total kidney volume normalized to the body surface area (TKV/BSA). ADPKD patients with eGFR >60 ml·min(-1)·1.73 m(-2) showed higher levels of CVD risk markers asymmetric and symmetric dimethylarginine (ADMA and SDMA), homocysteine, and S-adenosylhomocysteine (SAH) compared with the healthy controls. Upon adjustments for age, sex, systolic blood pressure, and creatinine, SDMA, homocysteine, and SAH remained negatively correlated with eGFR. Resulting cellular methylation power [S-adenosylmethionine (SAM)/SAH ratio] correlated with the reduction of renal function and increase in TKV. Concentrations of prostaglandins (PGs), including oxidative stress marker 8-isoprostane, as well as PGF2α, PGD2, and PGE2, were markedly elevated in patients with ADPKD compared with healthy controls. Upon adjustments for age, sex, systolic blood pressure, and creatinine, increased PGD2 and PGF2α were associated with reduced eGFR, whereas 8-isoprostane and again PGF2α were associated with an increase in TKV/BSA. Endothelial dysfunction and oxidative stress are evident early in ADPKD patients, even in those with preserved kidney function. The identified pathways may provide potential therapeutic targets for slowing down the disease progression.


Assuntos
Endotélio/patologia , Estresse Oxidativo , Rim Policístico Autossômico Dominante/patologia , Adolescente , Adulto , Feminino , Taxa de Filtração Glomerular , Humanos , Inflamação/patologia , Rim/patologia , Masculino , Óxido Nítrico/fisiologia , Rim Policístico Autossômico Dominante/metabolismo , Prostaglandinas/metabolismo , Transdução de Sinais/fisiologia , Adulto Jovem
19.
BMC Nephrol ; 14: 165, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23902712

RESUMO

BACKGROUND: We previously demonstrated that lovastatin decreases cyst volume and improves kidney function in the Han:SPRD (Cy/+) rat model of ADPKD. Since endothelial dysfunction and inflammatory activity are evident in patients with ADPKD, we investigated whether lovastatin reduces the inflammation and vascular dysfunction and improves kidney cell energy metabolism of Cy/+ rats. METHODS: Cy/+ and normal littermate control animals (+/+) were treated with either lovastatin (4 mg/kg/day) or vehicle (ethanol) from 3-8 weeks of age. 1H-NMR analysis was performed on water-soluble and lipid kidney fractions following perchloric acid extraction. Targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to assess endothelial dysfunction, oxidative stress and inflammation markers in plasma and kidney tissue extracts. RESULTS: Cy/+ rats showed perturbations in fatty acid metabolism and increased synthesis of pro-inflammatory lipoxygenases-produced bioactive lipids was observed. Lovastatin decreased inflammatory markers, specifically 13-HODE, 12-HETE and leukotriene B4. In Cy/+ rats, lovastatin reduced the elevated homocysteine and allantoin plasma levels and increased arginine, that is known to positively affect NO production. CONCLUSION: As previously described, lovastatin was able to decrease kidney weight and cyst volume density in Cy/+ rats. The decrease in cyst volume was accompanied by a reduction in arachidonic acid-mediated inflammation markers, the normalization of metabolism of NO precursors and the improvement of kidney energy cell metabolism.


Assuntos
Modelos Animais de Doenças , Lovastatina/uso terapêutico , Doenças Renais Policísticas/tratamento farmacológico , Doenças Renais Policísticas/metabolismo , Animais , Masculino , Ratos , Resultado do Tratamento
20.
Endocrinol Metab Clin North Am ; 31(4): 869-84, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12474635

RESUMO

The major contribution of hypercalciuria in raising urinary state of saturation with respect to calcium salts and subsequent risk of nephrolithiasis is appreciated. Derangements in the physiological mechanisms that regulate calcium homeostasis and contribute to hypercalciuria have also been identified. New avenues of research are beginning to explore the specific defects that may contribute to hypercalciuria. From such studies, an understanding of the role of certain dietary excesses as contributors to the development of hypercalciuria and, in some cases, attendant bone loss, is beginning. The contribution of genetics to hypercalciuria has provided a powerful means of identifying genes that contribute to the hypercalciuric phenotype in a number of hypercalciuric conditions. Such studies have disclosed that hypercalciuria is probably polygenic in nature and will require a concerted effort to better understand the defects while attempting to develop gene-specific countermeasures.


Assuntos
Cálcio/metabolismo , Cálculos Renais/etiologia , Litíase/etiologia , Cálcio/urina , Humanos , Cálculos Renais/genética , Cálculos Renais/metabolismo , Litíase/genética , Litíase/metabolismo , Oxalatos/metabolismo , Oxalatos/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA