Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Immunol ; 25(1): 166-177, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057617

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hybrid immunity is more protective than vaccination or previous infection alone. To investigate the kinetics of spike-reactive T (TS) cells from SARS-CoV-2 infection through messenger RNA vaccination in persons with hybrid immunity, we identified the T cell receptor (TCR) sequences of thousands of index TS cells and tracked their frequency in bulk TCRß repertoires sampled longitudinally from the peripheral blood of persons who had recovered from coronavirus disease 2019 (COVID-19). Vaccinations led to large expansions in memory TS cell clonotypes, most of which were CD8+ T cells, while also eliciting diverse TS cell clonotypes not observed before vaccination. TCR sequence similarity clustering identified public CD8+ and CD4+ TCR motifs associated with spike (S) specificity. Synthesis of longitudinal bulk ex vivo single-chain TCRß repertoires and paired-chain TCRÉ‘ß sequences from droplet sequencing of TS cells provides a roadmap for the rapid assessment of T cell responses to vaccines and emerging pathogens.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Linfócitos T CD8-Positivos , Vacinação , RNA Mensageiro/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Anticorpos Antivirais
2.
Artigo em Inglês | MEDLINE | ID: mdl-38154666

RESUMO

BACKGROUND: Functional T-cell responses are essential for virus clearance and long-term protection after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, whereas certain clinical factors, such as older age and immunocompromise, are associated with worse outcome. OBJECTIVE: We sought to study the breadth and magnitude of T-cell responses in patients with coronavirus disease 2019 (COVID-19) and in individuals with inborn errors of immunity (IEIs) who had received COVID-19 mRNA vaccine. METHODS: Using high-throughput sequencing and bioinformatics tools to characterize the T-cell receptor ß repertoire signatures in 540 individuals after SARS-CoV-2 infection, 31 IEI recipients of COVID-19 mRNA vaccine, and healthy controls, we quantified HLA class I- and class II-restricted SARS-CoV-2-specific responses and also identified several HLA allele-clonotype motif associations in patients with COVID-19, including a subcohort of anti-type 1 interferon (IFN-1)-positive patients. RESULTS: Our analysis revealed that elderly patients with COVID-19 with critical disease manifested lower SARS-CoV-2 T-cell clonotype diversity as well as T-cell responses with reduced magnitude, whereas the SARS-CoV-2-specific clonotypes targeted a broad range of HLA class I- and class II-restricted epitopes across the viral proteome. The presence of anti-IFN-I antibodies was associated with certain HLA alleles. Finally, COVID-19 mRNA immunization induced an increase in the breadth of SARS-CoV-2-specific clonotypes in patients with IEIs, including those who had failed to seroconvert. CONCLUSIONS: Elderly individuals have impaired capacity to develop broad and sustained T-cell responses after SARS-CoV-2 infection. Genetic factors may play a role in the production of anti-IFN-1 antibodies. COVID-19 mRNA vaccines are effective in inducing T-cell responses in patients with IEIs.

3.
Res Sq ; 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36263073

RESUMO

Almost three years into the SARS-CoV-2 pandemic, hybrid immunity is highly prevalent worldwide and more protective than vaccination or prior infection alone. Given emerging resistance of variant strains to neutralizing antibodies (nAb), it is likely that T cells contribute to this protection. To understand how sequential SARS-CoV-2 infection and mRNA-vectored SARS-CoV-2 spike (S) vaccines affect T cell clonotype-level expansion kinetics, we identified and cross-referenced TCR sequences from thousands of S-reactive single cells against deeply sequenced peripheral blood TCR repertoires longitudinally collected from persons during COVID-19 convalescence through booster vaccination. Successive vaccinations recalled memory T cells and elicited antigen-specific T cell clonotypes not detected after infection. Vaccine-related recruitment of novel clonotypes and the expansion of S-specific clones were most strongly observed for CD8+ T cells. Severe COVID-19 illness was associated with a more diverse CD4+ T cell response to SARS-CoV-2 both prior to and after mRNA vaccination, suggesting imprinting of CD4+ T cells by severe infection. TCR sequence similarity search algorithms revealed myriad public TCR clusters correlating with human leukocyte antigen (HLA) alleles. Selected TCRs from distinct clusters functionally recognized S in the predicted HLA context, with fine viral peptide requirements differing between TCRs. Most subjects tested had S-specific T cells in the nasal mucosa after a 3rd mRNA vaccine dose. The blood and nasal T cell responses to vaccination revealed by clonal tracking were more heterogeneous than nAb boosts. Analysis of bulk and single cell TCR sequences reveals T cell kinetics and diversity at the clonotype level, without requiring prior knowledge of T cell epitopes or HLA restriction, providing a roadmap for rapid assessment of T cell responses to emerging pathogens.

4.
Clin Infect Dis ; 75(12): 2079-2087, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35521791

RESUMO

BACKGROUND: While diagnostic, therapeutic, and vaccine development in the coronavirus disease 2019 (COVID-19) pandemic has proceeded at unprecedented speed, critical gaps in our understanding of the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain unaddressed by current diagnostic strategies. METHODS: A statistical classifier for identifying prior SARS-CoV-2 infection was trained using >4000 SARS-CoV-2-associated T-cell receptor (TCR) ß sequences identified by comparing 784 cases and 2447 controls from 5 independent cohorts. The T-Detect COVID (Adaptive Biotechnologies) assay applies this classifier to TCR repertoires sequenced from blood samples to yield a binary assessment of past infection. Assay performance was assessed in 2 retrospective (n = 346; n = 69) and 1 prospective cohort (n = 87) to determine positive percent agreement (PPA) and negative percent agreement (NPA). PPA was compared with 2 commercial serology assays, and pathogen cross-reactivity was evaluated. RESULTS: T-Detect COVID demonstrated high PPA in individuals with prior reverse transcription-polymerase chain reaction (RT-PCR)-confirmed SARS-CoV-2 infection (97.1% 15+ days from diagnosis; 94.5% 15+ days from symptom onset), high NPA (∼100%) in presumed or confirmed SARS-CoV-2 negative cases, equivalent or higher PPA than 2 commercial serology tests, and no evidence of pathogen cross-reactivity. CONCLUSIONS: T-Detect COVID is a novel T-cell immunosequencing assay demonstrating high clinical performance for identification of recent or prior SARS-CoV-2 infection from blood samples, with implications for clinical management, risk stratification, surveillance, and understanding of protective immunity and long-term sequelae.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Teste para COVID-19 , Estudos Retrospectivos , Estudos Prospectivos , Técnicas de Laboratório Clínico , Sensibilidade e Especificidade , Receptores de Antígenos de Linfócitos T
5.
Front Immunol ; 13: 880190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464463

RESUMO

T-cells specifically bind antigens to induce adaptive immune responses using highly specific molecular recognition, and a diverse T-cell repertoire with expansion of antigen-specific clones can indicate robust immune responses after infection or vaccination. For patients with inflammatory bowel disease (IBD), a spectrum of chronic intestinal inflammatory diseases usually requiring immunomodulatory treatment, the T-cell response has not been well characterized. Understanding the patient factors that result in strong vaccination responses is critical to guiding vaccination schedules and identifying mechanisms of T-cell responses in IBD and other immune-mediated conditions. Here we used T-cell receptor sequencing to show that T-cell responses in an IBD cohort were influenced by demographic and immune factors, relative to a control cohort of health care workers (HCWs). Subjects were sampled at the time of SARS-CoV-2 vaccination, and longitudinally afterwards; TCR Vß gene repertoires were sequenced and analyzed for COVID-19-specific clones. We observed significant differences in the overall strength of the T-cell response by age and vaccine type. We further stratified the T-cell response into Class-I- and Class-II-specific responses, showing that Ad26.COV2.S vector vaccine induced Class-I-biased T-cell responses, whereas mRNA vaccine types led to different responses, with mRNA-1273 vaccine inducing a more Class-I-deficient T-cell response compared to BNT162b2. Finally, we showed that these T-cell patterns were consistent with antibody levels from the same patients. Our results account for the surprising success of vaccination in nominally immuno-compromised IBD patients, while suggesting that a subset of IBD patients prone to deficiencies in T-cell response may warrant enhanced booster protocols.


Assuntos
COVID-19 , Doenças Inflamatórias Intestinais , Vacina de mRNA-1273 contra 2019-nCoV , Ad26COVS1 , Vacina BNT162 , Vacinas contra COVID-19 , Humanos , Imunidade Humoral , Receptores de Antígenos de Linfócitos T/genética , SARS-CoV-2 , Vacinas Sintéticas , Vacinas de mRNA
6.
Inflamm Bowel Dis ; 28(7): 1130-1133, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35397000

RESUMO

T-cell and antibody responses to severe acute respiratory syndrome coronavirus 2 vaccination in inflammatory bowel disease patients are poorly correlated. T-cell responses are preserved by most biologic therapies, but augmented by anti-tumor necrosis factor (anti-TNF) treatment. While anti-TNF therapy blunts the antibody response, cellular immunity after vaccination is robust.


Assuntos
COVID-19 , Doenças Inflamatórias Intestinais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , SARS-CoV-2 , Linfócitos T , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Vacinação
7.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35439166

RESUMO

BACKGROUNDMeasuring the immune response to SARS-CoV-2 enables assessment of past infection and protective immunity. SARS-CoV-2 infection induces humoral and T cell responses, but these responses vary with disease severity and individual characteristics.METHODSA T cell receptor (TCR) immunosequencing assay was conducted using small-volume blood samples from 302 individuals recovered from COVID-19. Correlations between the magnitude of the T cell response and neutralizing antibody (nAb) titers or indicators of disease severity were evaluated. Sensitivity of T cell testing was assessed and compared with serologic testing.RESULTSSARS-CoV-2-specific T cell responses were significantly correlated with nAb titers and clinical indicators of disease severity, including hospitalization, fever, and difficulty breathing. Despite modest declines in depth and breadth of T cell responses during convalescence, high sensitivity was observed until at least 6 months after infection, with overall sensitivity ~5% greater than serology tests for identifying prior SARS-CoV-2 infection. Improved performance of T cell testing was most apparent in recovered, nonhospitalized individuals sampled > 150 days after initial illness, suggesting greater sensitivity than serology at later time points and in individuals with less severe disease. T cell testing identified SARS-CoV-2 infection in 68% (55 of 81) of samples with undetectable nAb titers (<1:40) and in 37% (13 of 35) of samples classified as negative by 3 antibody assays.CONCLUSIONThese results support TCR-based testing as a scalable, reliable measure of past SARS-CoV-2 infection with clinical value beyond serology.TRIAL REGISTRATIONSpecimens were accrued under trial NCT04338360 accessible at clinicaltrials.gov.FUNDINGThis work was funded by Adaptive Biotechnologies, Frederick National Laboratory for Cancer Research, NIAID, Fred Hutchinson Joel Meyers Endowment, Fast Grants, and American Society for Transplantation and Cell Therapy.


Assuntos
COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Receptores de Antígenos de Linfócitos T/genética , SARS-CoV-2 , Índice de Gravidade de Doença , Estados Unidos
8.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35439174

RESUMO

T cells play a prominent role in orchestrating the immune response to viral diseases, but their role in the clinical presentation and subsequent immunity to SARS-CoV-2 infection remains poorly understood. As part of a population-based survey of the municipality of Vo', Italy, conducted after the initial SARS-CoV-2 outbreak, we sampled the T cell receptor (TCR) repertoires of the population 2 months after the initial PCR survey and followed up positive cases 9 and 15 months later. At 2 months, we found that 97.0% (98 of 101) of cases had elevated levels of TCRs associated with SARS-CoV-2. T cell frequency (depth) was increased in individuals with more severe disease. Both depth and diversity (breadth) of the TCR repertoire were positively associated with neutralizing antibody titers, driven mostly by CD4+ T cells directed against spike protein. At the later time points, detection of these TCRs remained high, with 90.7% (78 of 96) and 86.2% (25 of 29) of individuals having detectable signal at 9 and 15 months, respectively. Forty-three individuals were vaccinated by month 15 and showed a significant increase in TCRs directed against spike protein. Taken together, these results demonstrate the central role of T cells in mounting an immune defense against SARS-CoV-2 that persists out to 15 months.


Assuntos
COVID-19 , Linfócitos T CD4-Positivos , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
9.
Cell ; 185(5): 881-895.e20, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35216672

RESUMO

Post-acute sequelae of COVID-19 (PASC) represent an emerging global crisis. However, quantifiable risk factors for PASC and their biological associations are poorly resolved. We executed a deep multi-omic, longitudinal investigation of 309 COVID-19 patients from initial diagnosis to convalescence (2-3 months later), integrated with clinical data and patient-reported symptoms. We resolved four PASC-anticipating risk factors at the time of initial COVID-19 diagnosis: type 2 diabetes, SARS-CoV-2 RNAemia, Epstein-Barr virus viremia, and specific auto-antibodies. In patients with gastrointestinal PASC, SARS-CoV-2-specific and CMV-specific CD8+ T cells exhibited unique dynamics during recovery from COVID-19. Analysis of symptom-associated immunological signatures revealed coordinated immunity polarization into four endotypes, exhibiting divergent acute severity and PASC. We find that immunological associations between PASC factors diminish over time, leading to distinct convalescent immune states. Detectability of most PASC factors at COVID-19 diagnosis emphasizes the importance of early disease measurements for understanding emergent chronic conditions and suggests PASC treatment strategies.


Assuntos
COVID-19/complicações , COVID-19/diagnóstico , Convalescença , Imunidade Adaptativa/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Autoanticorpos/sangue , Biomarcadores/metabolismo , Proteínas Sanguíneas/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Progressão da Doença , Feminino , Humanos , Imunidade Inata/genética , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fatores de Risco , SARS-CoV-2/isolamento & purificação , Transcriptoma , Adulto Jovem , Síndrome de COVID-19 Pós-Aguda
10.
medRxiv ; 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34909785

RESUMO

BACKGROUND: Vaccination against SARS-CoV-2 is a highly effective strategy to protect against infection, which is predominantly mediated by vaccine-induced antibodies. Postvaccination antibodies are robustly produced by those with inflammatory bowel disease (IBD) even on immune-modifying therapies but are blunted by anti-TNF therapy. In contrast, T-cell response which primarily determines long-term efficacy against disease progression,, is less well understood. We aimed to assess the post-vaccination T-cell response and its relationship to antibody responses in patients with inflammatory bowel disease (IBD) on immune-modifying therapies. METHODS: We evaluated IBD patients who completed SARS-CoV-2 vaccination using samples collected at four time points (dose 1, dose 2, 2 weeks after dose 2, 8 weeks after dose 2). T-cell clonal analysis was performed by T-cell Receptor (TCR) immunosequencing. The breadth (number of unique sequences to a given protein) and depth (relative abundance of all the unique sequences to a given protein) of the T-cell clonal response were quantified using reference datasets and were compared to antibody responses. RESULTS: Overall, 303 subjects were included (55% female; 5% with prior COVID) (Table). 53% received BNT262b (Pfizer), 42% mRNA-1273 (Moderna) and 5% Ad26CoV2 (J&J). The Spike-specific clonal response peaked 2 weeks after completion of the vaccine regimen (3- and 5-fold for breadth and depth, respectively); no changes were seen for non-Spike clones, suggesting vaccine specificity. Reduced T-cell clonal depth was associated with chronologic age, male sex, and immunomodulator treatment. It was preserved by non-anti-TNF biologic therapies, and augmented clonal depth was associated with anti-TNF treatment. TCR depth and breadth were associated with vaccine type; after adjusting for age and gender, Ad26CoV2 (J&J) exhibited weaker metrics than mRNA-1273 (Moderna) (p=0.01 for each) or BNT262b (Pfizer) (p=0.056 for depth). Antibody and T-cell responses were only modestly correlated. While those with robust humoral responses also had robust TCR clonal expansion, a substantial fraction of patients with high antibody levels had only a minimal T-cell clonal response. CONCLUSION: Age, sex and select immunotherapies are associated with the T-cell clonal response to SARS-CoV-2 vaccines, and T-cell responses are low in many patients despite high antibody levels. These factors, as well as differences seen by vaccine type may help guide reimmunization vaccine strategy in immune-impaired populations. Further study of the effects of anti-TNF therapy on vaccine responses are warranted.

11.
Clin Cancer Res ; 27(24): 6696-6708, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34667029

RESUMO

PURPOSE: This proof-of-principle clinical trial evaluated whether an allogeneic multiple myeloma GM-CSF-secreting vaccine (MM-GVAX) in combination with lenalidomide could deepen the clinical response in patients with multiple myeloma in sustained near complete remission (nCR). PATIENTS AND METHODS: Fifteen patients on lenalidomide were treated with MM-GVAX and pneumococcal conjugate vaccine (PCV; Prevnar) at 1, 2, 3, and 6 months. RESULTS: Eight patients (53.3%) achieved a true CR. With a median follow-up of 5 years, the median progression-free survival had not been reached, and the median overall survival was 7.8 years from enrollment. MM-GVAX induced clonal T-cell expansion and measurable cytokine responses that persisted up to 7 years in all patients. At baseline, a higher minimal residual disease was predictive of early relapse. After vaccination, a lack of both CD27-DNAM1-CD8+ T cells and antigen-presenting cells was associated with disease progression. CONCLUSIONS: MM-GVAX, along with lenalidomide, effectively primed durable immunity and resulted in long-term disease control, as suggested by the reappearance of a detectable, fluctuating M-spike without meeting the criteria for clinical relapse. For patients in a nCR, MM-GVAX administration was safe and resulted in prolonged clinical responses.


Assuntos
Vacinas Anticâncer , Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfócitos T CD8-Positivos , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Lenalidomida , Mieloma Múltiplo/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico
12.
J Immunother Cancer ; 9(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34465597

RESUMO

BACKGROUND: Dedifferentiated liposarcoma (DDLPS) is one of the most common soft tissue sarcoma subtypes and is devastating in the advanced/metastatic stage. Despite the observation of clinical responses to PD-1 inhibitors, little is known about the immune microenvironment in relation to patient prognosis. METHODS: We performed a retrospective study of 61 patients with DDLPS. We completed deep sequencing of the T-cell receptor (TCR) ß-chain and RNA sequencing for predictive modeling, evaluating both immune markers and tumor escape genes. Hierarchical clustering and recursive partitioning were employed to elucidate relationships of cellular infiltrates within the tumor microenvironment, while an immune score for single markers was created as a predictive tool. RESULTS: Although many DDLPS samples had low TCR clonality, high TCR clonality combined with low T-cell fraction predicted lower 3-year overall survival (p=0.05). Higher levels of CD14+ monocytes (p=0.02) inversely correlated with 3-year recurrence-free survival (RFS), while CD4+ T-cell infiltration (p=0.05) was associated with a higher RFS. Genes associated with longer RFS included PD-1 (p=0.003), ICOS (p=0.006), BTLA (p=0.033), and CTLA4 (p=0.02). In a composite immune score, CD4+ T cells had the strongest positive predictive value, while CD14+ monocytes and M2 macrophages had the strongest negative predictive values. CONCLUSIONS: Immune cell infiltration predicts clinical outcome in DDLPS, with CD4+ cells associated with better outcomes; CD14+ cells and M2 macrophages are associated with worse outcomes. Future checkpoint inhibitor studies in DDLPS should incorporate immunosequencing and gene expression profiling techniques that can generate immune landscape profiles.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Macrófagos/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Lipossarcoma , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados da Assistência ao Paciente , Estudos Retrospectivos , Adulto Jovem
13.
PLoS One ; 16(8): e0249484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34460826

RESUMO

The human adaptive immune system must generate extraordinary diversity to be able to respond to all possible pathogens. The T-cell repertoire derives this high diversity through somatic recombination of the T-cell receptor (TCR) locus, a random process that results in repertoires that are largely private to each individual. However, factors such as thymic selection and T-cell proliferation upon antigen exposure can affect TCR sharing among individuals. By immunosequencing the TCRß variable region of 426 healthy individuals, we find that, on average, fewer than 1% of TCRß clones are shared between individuals, consistent with largely private TCRß repertoires. However, we detect a significant correlation between increased HLA allele sharing and increased number of shared TCRß clones, with each additional shared HLA allele contributing to an increase in ~0.01% of the total shared TCRß clones, supporting a key role for HLA type in shaping the immune repertoire. Surprisingly, we find that shared antigen exposure to CMV leads to fewer shared TCRß clones, even after controlling for HLA, indicative of a largely private response to major viral antigenic exposure. Consistent with this hypothesis, we find that increased age is correlated with decreased overall TCRß clone sharing, indicating that the pattern of private TCRß clonal expansion is a general feature of the T-cell response to other infectious antigens as well. However, increased age also correlates with increased sharing among the lowest frequency clones, consistent with decreased repertoire diversity in older individuals. Together, all of these factors contribute to shaping the TCRß repertoire, and understanding their interplay has important implications for the use of T cells for therapeutics and diagnostics.


Assuntos
Antígenos HLA/imunologia , Teste de Histocompatibilidade , Receptores de Antígenos de Linfócitos T/imunologia , Viroses/imunologia , Adulto , Fatores Etários , Doença Crônica , Infecções por Citomegalovirus/imunologia , Teste de Histocompatibilidade/métodos , Humanos
14.
medRxiv ; 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33791723

RESUMO

Measuring the adaptive immune response to SARS-CoV-2 can enable the assessment of past infection as well as protective immunity and the risk of reinfection. While neutralizing antibody (nAb) titers are one measure of protection, such assays are challenging to perform at a large scale and the longevity of the SARS-CoV-2 nAb response is not fully understood. Here, we apply a T-cell receptor (TCR) sequencing assay that can be performed on a small volume standard blood sample to assess the adaptive T-cell response to SARS-CoV-2 infection. Samples were collected from a cohort of 302 individuals recovered from COVID-19 up to 6 months after infection. Previously published findings in this cohort showed that two commercially available SARS-CoV-2 serologic assays correlate well with nAb testing. We demonstrate that the magnitude of the SARS-CoV-2-specific T-cell response strongly correlates with nAb titer, as well as clinical indicators of disease severity including hospitalization, fever, or difficulty breathing. While the depth and breadth of the T-cell response declines during convalescence, the T-cell signal remains well above background with high sensitivity up to at least 6 months following initial infection. Compared to serology tests detecting binding antibodies to SARS-CoV-2 spike and nucleoprotein, the overall sensitivity of the TCR-based assay across the entire cohort and all timepoints was approximately 5% greater for identifying prior SARS-CoV-2 infection. Notably, the improved performance of T-cell testing compared to serology was most apparent in recovered individuals who were not hospitalized and were sampled beyond 150 days of their initial illness, suggesting that antibody testing may have reduced sensitivity in individuals who experienced less severe COVID-19 illness and at later timepoints. Finally, T-cell testing was able to identify SARS-CoV-2 infection in 68% (55/81) of convalescent samples having nAb titers below the lower limit of detection, as well as 37% (13/35) of samples testing negative by all three antibody assays. These results demonstrate the utility of a TCR-based assay as a scalable, reliable measure of past SARS-CoV-2 infection across a spectrum of disease severity. Additionally, the TCR repertoire may be useful as a surrogate for protective immunity with additive clinical value beyond serologic or nAb testing methods.

15.
Diabetologia ; 64(2): 313-324, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33145642

RESUMO

AIMS/HYPOTHESIS: Numerous clinical studies have investigated the anti-CD3ɛ monoclonal antibody otelixizumab in individuals with type 1 diabetes, but limited progress has been made in identifying the optimal clinical dose with acceptable tolerability and safety. The aim of this study was to evaluate the association between dose-response, safety and tolerability, beta cell function preservation and the immunological effects of otelixizumab in new-onset type 1 diabetes. METHODS: In this randomised, single-blind, placebo-controlled, 24 month study, conducted in five centres in Belgium via the Belgian Diabetes Registry, participants (16-27 years old, <32 days from diagnosis of type 1 diabetes) were scheduled to receive placebo or otelixizumab in one of four dose cohorts (cumulative i.v. dose 9, 18, 27 or 36 mg over 6 days; planned n = 40). Randomisation to treatment was by a central computer system; only participants and bedside study personnel were blinded to study treatment. The co-primary endpoints were the incidence of adverse events, the rate of Epstein-Barr virus (EBV) reactivation, and laboratory measures and vital signs. A mixed-meal tolerance test was used to assess beta cell function; exploratory biomarkers were used to measure T cell responses. RESULTS: Thirty participants were randomised/28 were analysed (placebo, n = 6/5; otelixizumab 9 mg, n = 9/8; otelixizumab 18 mg, n = 8/8; otelixizumab 27 mg, n = 7/7; otelixizumab 36 mg, n = 0). Dosing was stopped at otelixizumab 27 mg as the predefined EBV reactivation stopping criteria were met. Adverse event frequency and severity were dose dependent; all participants on otelixizumab experienced at least one adverse event related to cytokine release syndrome during the dosing period. EBV reactivation (otelixizumab 9 mg, n = 2/9; 18 mg, n = 4/8: 27 mg, n = 5/7) and clinical manifestations (otelixizumab 9 mg, n = 0/9; 18 mg, n = 1/8; 27 mg, n = 3/7) were rapid, dose dependent and transient, and were associated with increased productive T cell clonality that diminished over time. Change from baseline mixed-meal tolerance test C-peptide weighted mean AUC0-120 min following otelixizumab 9 mg was above baseline for up to 18 months (difference from placebo 0.39 [95% CI 0.06, 0.72]; p = 0.023); no beta cell function preservation was observed at otelixizumab 18 and 27 mg. CONCLUSIONS/INTERPRETATION: A metabolic response was observed with otelixizumab 9 mg, while doses higher than 18 mg increased the risk of unwanted clinical EBV reactivation. Although otelixizumab can temporarily compromise immunocompetence, allowing EBV to reactivate, the effect is dose dependent and transient, as evidenced by a rapid emergence of EBV-specific T cells preceding long-term control over EBV reactivation. TRIAL REGISTRATION: ClinicalTrials.gov NCT02000817. FUNDING: The study was funded by GlaxoSmithKline. Graphical abstract.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Adolescente , Adulto , Peptídeo C/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Progressão da Doença , Relação Dose-Resposta a Droga , Infecções por Vírus Epstein-Barr/induzido quimicamente , Feminino , Humanos , Infecção Latente/induzido quimicamente , Masculino , Método Simples-Cego , Adulto Jovem
16.
Res Sq ; 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32793896

RESUMO

We describe the establishment and current content of the ImmuneCODE™ database, which includes hundreds of millions of T-cell Receptor (TCR) sequences from over 1,400 subjects exposed to or infected with the SARS-CoV-2 virus, as well as over 135,000 high-confidence SARS-CoV-2-specific TCRs. This database is made freely available, and the data contained in it can be downloaded and analyzed online or offline to assist with the global efforts to understand the immune response to the SARS-CoV-2 virus and develop new interventions.

17.
medRxiv ; 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32793919

RESUMO

T cells are involved in the early identification and clearance of viral infections and also support the development of antibodies by B cells. This central role for T cells makes them a desirable target for assessing the immune response to SARS-CoV-2 infection. Here, we combined two high-throughput immune profiling methods to create a quantitative picture of the T-cell response to SARS-CoV-2. First, at the individual level, we deeply characterized 3 acutely infected and 58 recovered COVID-19 subjects by experimentally mapping their CD8 T-cell response through antigen stimulation to 545 Human Leukocyte Antigen (HLA) class I presented viral peptides (class II data in a forthcoming study). Then, at the population level, we performed T-cell repertoire sequencing on 1,815 samples (from 1,521 COVID-19 subjects) as well as 3,500 controls to identify shared "public" T-cell receptors (TCRs) associated with SARS-CoV-2 infection from both CD8 and CD4 T cells. Collectively, our data reveal that CD8 T-cell responses are often driven by a few immunodominant, HLA-restricted epitopes. As expected, the T-cell response to SARS-CoV-2 peaks about one to two weeks after infection and is detectable for at least several months after recovery. As an application of these data, we trained a classifier to diagnose SARS-CoV-2 infection based solely on TCR sequencing from blood samples, and observed, at 99.8% specificity, high early sensitivity soon after diagnosis (Day 3-7 = 85.1% [95% CI = 79.9-89.7]; Day 8-14 = 94.8% [90.7-98.4]) as well as lasting sensitivity after recovery (Day 29+/convalescent = 95.4% [92.1-98.3]). These results demonstrate an approach to reliably assess the adaptive immune response both soon after viral antigenic exposure (before antibodies are typically detectable) as well as at later time points. This blood-based molecular approach to characterizing the cellular immune response has applications in clinical diagnostics as well as in vaccine development and monitoring.

18.
Biol Blood Marrow Transplant ; 26(9): 1567-1574, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32417490

RESUMO

Delayed reconstitution of the immune system is a long-recognized complication after allogeneic hematopoietic cell transplantation (HCT). Specifically, loss of T cell diversity has been thought to contribute to infectious complications, graft-versus-host disease (GVHD), and disease relapse. We performed serial high-resolution next-generation sequencing of T cell receptor (TCR)-ß in 99 related or unrelated donor (57 unrelated, 42 related) allogeneic HCT recipients (55 with reduced-intensity conditioning, 44 with myeloablative conditioning) during the first 3 months after HCT using the immunoSEQ Assay. We measured T cell fraction, clonality (1- Peilou's evenness) and Daley-Smith richness from recipient samples at multiple time points. In agreement with previous studies, we found that although absolute T cell numbers recover relatively quickly after HCT, T cell repertoire diversity remains diminished. Restricted diversity was associated with conditioning intensity, use of antithymocyte globulin, and donor type. Increased number of expanded clones compared to donor T cell clones at day +30 was associated with the incidence of acute GVHD (hazard ratio [HR], 1.11; P = .00005). Even after exclusion of the 12 patients who developed acute GVHD before day +30, the association between acute GVHD and increased clonal expansion at day +30 remained (HR, 1.098; P = .041), indicating that increased clonal T cell expansion preceded the development of acute GVHD. Our results highlight T cell clonal expansion as a potential novel biomarker for acute GVHD that warrants further study.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Linfócitos T , Condicionamento Pré-Transplante , Doadores não Relacionados
19.
Nat Commun ; 11(1): 603, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001676

RESUMO

Immunotherapy targeting T cells is increasingly utilized to treat solid tumors including non-small cell lung cancer (NSCLC). This requires a better understanding of the T cells in the lungs of patients with NSCLC. Here, we report T cell repertoire analysis in a cohort of 236 early-stage NSCLC patients. T cell repertoire attributes are associated with clinicopathologic features, mutational and immune landscape. A considerable proportion of the most prevalent T cells in tumors are also prevalent in the uninvolved tumor-adjacent lungs and appear specific to shared background mutations or viral infections. Patients with higher T cell repertoire homology between the tumor and uninvolved tumor-adjacent lung, suggesting a less tumor-focused T cell response, exhibit inferior survival. These findings indicate that a concise understanding of antigens and T cells in NSCLC is needed to improve therapeutic efficacy and reduce toxicity with immunotherapy, particularly adoptive T cell therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Células Clonais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Análise de Sobrevida
20.
Nat Med ; 24(11): 1655-1661, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30297911

RESUMO

Adjuvant ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1) both improve relapse-free survival of stage III melanoma patients1,2. In stage IV disease, the combination of ipilimumab + nivolumab is superior to ipilimumab alone and also appears to be more effective than nivolumab monotherapy3. Preclinical work suggests that neoadjuvant application of checkpoint inhibitors may be superior to adjuvant therapy4. To address this question and to test feasibility, 20 patients with palpable stage III melanoma were 1:1 randomized to receive ipilimumab 3 mg kg-1 and nivolumab 1 mg kg-1, as either four courses after surgery (adjuvant arm) or two courses before surgery and two courses postsurgery (neoadjuvant arm). Neoadjuvant therapy was feasible, with all patients undergoing surgery at the preplanned time point. However in both arms, 9/10 patients experienced one or more grade 3/4 adverse events. Pathological responses were achieved in 7/9 (78%) patients treated in the neoadjuvant arm. None of these patients have relapsed so far (median follow-up, 25.6 months). We found that neoadjuvant ipilimumab + nivolumab expand more tumor-resident T cell clones than adjuvant application. While neoadjuvant therapy appears promising, with the current regimen it induced high toxicity rates; therefore, it needs further investigation to preserve efficacy but reduce toxicity.


Assuntos
Quimioterapia Adjuvante/métodos , Ipilimumab/administração & dosagem , Melanoma/tratamento farmacológico , Nivolumabe/administração & dosagem , Adulto , Idoso , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Quimioterapia Adjuvante/efeitos adversos , Intervalo Livre de Doença , Humanos , Ipilimumab/efeitos adversos , Masculino , Melanoma/patologia , Melanoma/cirurgia , Pessoa de Meia-Idade , Terapia Neoadjuvante/efeitos adversos , Estadiamento de Neoplasias , Nivolumabe/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA