Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Curr Opin Plant Biol ; 80: 102546, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38718678

RESUMO

A delicate balance in gene expression, a process highly controlled by post-transcriptional gene silencing mediated by miRNAs, is vital during plant growth and responses to stress. Within the miRNA biogenesis pathway, HYL1 is one of the most important proteins, initially recognized for its role as a cofactor of DCL1. Yet, HYL1's functions extend beyond miRNA processing, encompassing transcriptional regulation and protein translation between other recently discovered functions. This review comprehensively examines our current knowledge of HYL1 functions in plants, looking at its structure, the complex biochemistry behind it, and its involvement in a variety of cellular processes. We also explored the most compelling open questions regarding HYL1 biology and the further perspectives in its study. Unraveling HYL1 functional details could better understand how plants grow, face environmental stresses, and how the miRNA pathway adapts its outcome to the plant growing conditions.

2.
Plant Cell ; 35(8): 2910-2928, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37195876

RESUMO

The regulation of microRNA (miRNA) biogenesis is crucial for maintaining plant homeostasis under biotic and abiotic stress. The crosstalk between the RNA polymerase II (Pol-II) complex and the miRNA processing machinery has emerged as a central hub modulating transcription and cotranscriptional processing of primary miRNA transcripts (pri-miRNAs). However, it remains unclear how miRNA-specific transcriptional regulators recognize MIRNA loci. Here, we show that the Arabidopsis (Arabidopsis thaliana) HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE15 (HOS15)-HISTONE DEACETYLASE9 (HDA9) complex is a conditional suppressor of miRNA biogenesis, particularly in response to abscisic acid (ABA). When treated with ABA, hos15/hda9 mutants show enhanced transcription of pri-miRNAs that is accompanied by increased processing, leading to overaccumulation of a set of mature miRNAs. Moreover, upon recognition of the nascent pri-miRNAs, the ABA-induced recruitment of the HOS15-HDA9 complex to MIRNA loci is guided by HYPONASTIC LEAVES 1 (HYL1). The HYL1-dependent recruitment of the HOS15-HDA9 complex to MIRNA loci suppresses expression of MIRNAs and processing of pri-miRNA. Most importantly, our findings indicate that nascent pri-miRNAs serve as scaffolds for recruiting transcriptional regulators, specifically to MIRNA loci. This indicates that RNA molecules can act as regulators of their own expression by causing a negative feedback loop that turns off their transcription, providing a self-buffering system.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/genética , Histona Desacetilases/metabolismo
3.
Plant Cell ; 35(6): 1626-1653, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36477566

RESUMO

The study of RNAs has become one of the most influential research fields in contemporary biology and biomedicine. In the last few years, new sequencing technologies have produced an explosion of new and exciting discoveries in the field but have also given rise to many open questions. Defining these questions, together with old, long-standing gaps in our knowledge, is the spirit of this article. The breadth of topics within RNA biology research is vast, and every aspect of the biology of these molecules contains countless exciting open questions. Here, we asked 12 groups to discuss their most compelling question among some plant RNA biology topics. The following vignettes cover RNA alternative splicing; RNA dynamics; RNA translation; RNA structures; R-loops; epitranscriptomics; long non-coding RNAs; small RNA production and their functions in crops; small RNAs during gametogenesis and in cross-kingdom RNA interference; and RNA-directed DNA methylation. In each section, we will present the current state-of-the-art in plant RNA biology research before asking the questions that will surely motivate future discoveries in the field. We hope this article will spark a debate about the future perspective on RNA biology and provoke novel reflections in the reader.


Assuntos
Regulação da Expressão Gênica , RNA , RNA de Plantas/genética , RNA/genética , Interferência de RNA , Metilação , Biologia
4.
Plants (Basel) ; 10(2)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573197

RESUMO

MicroRNAs are small regulatory RNAs involved in several processes in plants ranging from development and stress responses to defense against pathogens. In order to accomplish their molecular functions, miRNAs are methylated and loaded into one ARGONAUTE (AGO) protein, commonly known as AGO1, to stabilize and protect the molecule and to assemble a functional RNA-induced silencing complex (RISC). A specific machinery controls miRNA turnover to ensure the silencing release of targeted-genes in given circumstances. The trimming and tailing of miRNAs are fundamental modifications related to their turnover and, hence, to their action. In order to gain a better understanding of these modifications, we analyzed Arabidopsis thaliana small RNA sequencing data from a diversity of mutants, related to miRNA biogenesis, action, and turnover, and from different cellular fractions and immunoprecipitations. Besides confirming the effects of known players in these pathways, we found increased trimming and tailing in miRNA biogenesis mutants. More importantly, our analysis allowed us to reveal the importance of ARGONAUTE 1 (AGO1) loading, slicing activity, and cellular localization in trimming and tailing of miRNAs.

5.
Mol Plant ; 14(3): 426-439, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33385584

RESUMO

Post-transcriptional gene silencing mediated by microRNAs (miRNAs) modulates numerous developmental and stress response pathways. For the last two decades, HASTY (HST), the ortholog of human EXPORTIN 5, was considered to be a candidate protein that exports plant miRNAs from the nucleus to the cytoplasm. Here, we report that HST functions in the miRNA pathway independent of its cargo-exporting activity in Arabidopsis. We found that Arabidopsis mutants with impaired HST shuttling exhibit normal subcellular distribution of miRNAs. Interestingly, protein-protein interaction and microscopy assays showed that HST directly interacts with the microprocessor core component DCL1 through its N-terminal domain. Moreover, mass spectrometry analysis revealed that HST also interacts independently of its N-terminal domain with the mediator complex subunit MED37. Further experiments revealed that HST could act as a scaffold to facilitate the recruitment of DCL1 to genomic MIRNA loci by stabilizing the DCL1-MED37 complex, which in turn promotes the transcription and proper processing of primary miRNA transcripts (pri-miRNAs). Taken together, these results suggest that HST is likely associated with the formation of the miRNA biogenesis complex at MIRNA genes, promoting the transcription and processing of pri-miRNAs rather than the direct export of processed miRNAs from the nucleus.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Carioferinas/metabolismo , MicroRNAs/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica/fisiologia , Carioferinas/genética , Espectrometria de Massas , MicroRNAs/genética , Processamento Pós-Transcricional do RNA
6.
Dev Cell ; 46(2): 236-247.e6, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30016624

RESUMO

Light is the most influential environmental stimulus for plant growth. In response to deficient light, plants reprogram their development to adjust their growth in search for a light source. A fine reprogramming of gene expression orchestrates this adaptive trait. Here we show that plants alter microRNA (miRNA) biogenesis in response to light transition. When plants suffer an unusual extended period of light deprivation, the miRNA biogenesis factor HYPONASTIC LEAVES 1 (HYL1) is degraded but an inactive pool of phosphorylated protein remains stable inside the nucleus. Degradation of HYL1 leads to the release of gene silencing, triggering a proper response to dark and shade. Upon light restoration, a quick dephosphorylation of HYL1 leads to the reactivation of miRNA biogenesis and a switch toward a developmental program that maximizes the light uptake. Our findings define a unique and fast regulatory mechanism controlling the plant silencing machinery during plant light response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Inativação Gênica , Luz , MicroRNAs/genética , Mutação , Fosforilação , Folhas de Planta/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA