Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 53: 110225, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38435739

RESUMO

The availability of field experimental data plays a pivotal role in advancing agricultural research, particularly in the Mediterranean, where farmers face significant challenges due to water scarcity and changing climatic conditions. We present a multi-year homogenized dataset of agro-physiological traits collected on industrial tomatoes and focused on the effect of deficit irrigation (DI). The dataset has been compiled over nine years and comprises 100 experimental plots, where 32 DI strategies have been tested. Visual observations on tomato phenology and qualitative and quantitative production data have been collected in field and laboratory surveys, complemented with detailed information on pedo-climatic conditions and irrigation scheduling (timing and volume). Researchers can find in this dataset a rich source for calibrating and evaluating agro-physiological models and a reference basis to study the relationships between DI strategies, weather variability, and the performance of tomato growing systems. Agronomists from the public and private sectors can gain domain knowledge to support local farmers with the best DI strategies to achieve high yields while optimizing water use. Moreover, this dataset serves as ground truth for digital decision support systems, which need real-world data to enhance their accuracy in guiding farmers on efficient water use. This data source is intended to become a crucial asset for researchers, agronomists, and decision-makers in the Mediterranean as it bridges the gap between research and practice in an area where farmers are already striving with water scarcity for industrial tomato cultivation.

2.
Front Plant Sci ; 14: 1238163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692419

RESUMO

The reuse of treated wastewater for crop irrigation is vital in water-scarce semi-arid regions. However, concerns arise regarding emerging contaminants (ECs) that persist in treated wastewater and may accumulate in irrigated crops, potentially entering the food chain and the environment. This pilot-scale study conducted in southern Italy focused on tomato plants (Solanum lycopersicum L. cv Taylor F1) irrigated with treated wastewater to investigate EC uptake, accumulation, and translocation processes. The experiment spanned from June to September 2021 and involved three irrigation strategies: conventional water (FW), treated wastewater spiked with 10 target contaminants at the European average dose (TWWx1), and tertiary WWTP effluent spiked with the target contaminants at a triple dose (TWWx3). The results showed distinct behavior and distribution of ECs between the TWWx1 and TWWx3 strategies. In the TWWx3 strategy, clarithromycin, carbamazepine, metoprolol, fluconazole, and climbazole exhibited interactions with the soil-plant system, with varying degradation rates, soil accumulation rates, and plant accumulation rates. In contrast, naproxen, ketoprofen, diclofenac, sulfamethoxazole, and trimethoprim showed degradation. These findings imply that some ECs may be actively taken up by plants, potentially introducing them into the food chain and raising concerns for humans and the environment.

3.
Plants (Basel) ; 10(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34834811

RESUMO

Organic farming systems are often constrained by limited soil nitrogen (N) availability. Here we evaluated the effect of foliar organic N and sulphur (S), and selenium (Se) application on durum wheat, considering N uptake, utilization efficiency (NUtE), grain yield, and protein concentration as target variables. Field trials were conducted in 2018 and 2019 on two old (Cappelli and old Saragolla) and two modern (Marco Aurelio and Nadif) Italian durum wheat varieties. Four organic fertilization strategies were evaluated, i.e., the control (CTR, dry blood meal at sowing), the application of foliar N (CTR + N) and S (CTR + S), and their joint use (CTR + NS). Furthermore, a foliar application of sodium selenate was evaluated. Three factors-variety, fertilization strategies and selenium application-were arranged in a split-split-plot design and tested in two growing seasons. The modern variety Marco Aurelio led to the highest NUtE and grain yield in both seasons. S and N applications had a positive synergic effect, especially under drought conditions, on pre-anthesis N uptake, N translocation, NUtE, and grain yield. Se treatment improved post-anthesis N uptake and NUtE, leading to 17% yield increase in the old variety Cappelli, and to 13% and 14% yield increase in Marco Aurelio and Nadif, mainly attributed to NUtE increase. This study demonstrated that the synergistic effect of foliar applications could improve organic durum wheat yields in Mediterranean environments, especially on modern varieties.

4.
J Agric Food Chem ; 63(29): 6501-12, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26138860

RESUMO

Environmental stress during grain filling may affect wheat protein composition, thus influencing its final quality. A proteomic approach was used to evaluate changes in storage protein composition under water stress of two Italian durum wheat (Triticum turgidum ssp. durum) cultivars, Ciccio and Svevo. The high-molecular-weight glutenin region increased progressively in both cultivars and under two water regimens. The L48-35 region, corresponding to low-molecular-weight (LMW) glutenin subunits, increased slightly during grain development and decreased under water stress in both cultivars. In particular, an s-type LMW related to superior technological quality was down-expressed in the early-mid period in Svevo and in the mid-late period in Ciccio. Finally, the L<35 region, corresponding to gliadin-like proteins, decreased slightly during grain development and increased under stress in both cultivars. Several α-gliadins, associated with immunological potential, increased their expression under water stress, especially in Svevo in the early-mid stage of grain filling.


Assuntos
Glutens/análise , Proteínas de Plantas/análise , Sementes/crescimento & desenvolvimento , Estresse Fisiológico/fisiologia , Triticum/química , Água , Secas , Eletroforese em Gel Bidimensional , Itália , Sementes/química
5.
J Agric Food Chem ; 61(11): 2606-17, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23414385

RESUMO

The gluten protein composition and expression level influence dough properties and are cultivar and environment dependent. To broaden the knowledge of the durum wheat gluten proteome, three cultivars were compared in two different growing seasons by a proteomic approach. Cultivar-specific and differentially expressed spots in the two years were identified by mass spectrometry. Significant differences were observed among the cultivars: Ofanto showed the lowest protein spot volumes in the high molecular weight (HMW) and low molecular weight (LMW) <35,000 regions and the highest in the LMW 48,000-35,000 region, Latino the lowest in the LMW 48,000-35,000 region, and Simeto an intermediate expression level in both LMW regions. In the warmer year the up-regulation of HMW glutenins, α-gliadins, and a globulin 3 protein and the down-expression of LMW glutenins and γ-gliadins were observed. Among the cultivars, Simeto showed the highest stability across the environments.


Assuntos
Glutens/química , Triticum/química , Eletroforese em Gel Bidimensional , Glutens/genética , Glutens/metabolismo , Peso Molecular , Proteoma/química , Proteoma/genética , Proteoma/metabolismo , Proteômica , Triticum/classificação
6.
Plant Mol Biol ; 48(5-6): 697-712, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11999844

RESUMO

We investigated the overlap among quantitative trait loci (QTLs) in maize for seminal root traits measured in hydroponics with QTLs for grain yield under well-watered (GY-WW) and water-stressed (GY-WS) field conditions as well as for a drought tolerance index (DTI) computed as GY-WS/GY-WW. In hydroponics, 11, 7, 9, and 10 QTLs were identified for primary root length (R1L), primary root diameter (R1D), primary root weight (R1W), and for the weight of the adventitious seminal roots (R2W), respectively. In the field, 7, 8, and 9 QTLs were identified for GY-WW, GY-WS, and DTI, respectively. Despite the weak correlation of root traits in hydroponics with GY-WW, GY-WS, and DTI, a noticeable overlap between the corresponding QTLs was observed. QTLs for R2W most frequently and consistently overlapped with QTLs for GY-WW, GY-WS, and/or DTI. At four QTL regions, an increase in R2W was positively associated with GY-WW, GY-WS, and/or DTI. A 10 cM interval on chromosome 1 between PGAMCTA205 and php20644 showed the strongest effect on R1L, R1D, R2W, GY-WW, GY-WS, and DTI. These results indicate the feasibility of using hydroponics in maize to identify QTL regions controlling root traits at an early growth stage and also influencing GY in the field. A comparative analysis of the QTL regions herein identified with those described in previous studies investigating root traits in different maize populations revealed a number of QTLs in common.


Assuntos
Raízes de Plantas/genética , Característica Quantitativa Herdável , Água/farmacologia , Zea mays/genética , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Hidroponia , Repetições de Microssatélites , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Polimorfismo de Fragmento de Restrição , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA