Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 45(5): 1382-1397, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35233800

RESUMO

Carbonic anhydrase (CA) performs the first enzymatic step of C4 photosynthesis by catalysing the reversible hydration of dissolved CO2 that diffuses into mesophyll cells from intercellular airspaces. This CA-catalysed reaction provides the bicarbonate used by phosphoenolpyruvate carboxylase to generate products that flow into the C4 carbon-concentrating mechanism (CCM). It was previously demonstrated that the Zea mays ca1ca2 double mutant lost 97% of leaf CA activity, but there was little difference in the growth phenotype under ambient CO2 partial pressures (pCO2 ). We hypothesise that since CAs are among the fastest enzymes, minimal activity from a third CA, CA8, can provide the inorganic carbon needed to drive C4 photosynthesis. We observed that removing CA8 from the maize ca1ca2 background resulted in plants that had 0.2% of wild-type leaf CA activity. These ca1ca2ca8 plants had reduced photosynthetic parameters and could only survive at elevated pCO2 . Photosynthetic and carbon isotope analysis combined with modelling of photosynthesis and carbon isotope discrimination was used to determine if ca1ca2ca8 plants had a functional C4 cycle or were relying on direct CO2 diffusion to ribulose 1,5-bisphosphate carboxylase/oxygenase within bundle sheath cells. The results suggest that leaf CA activity in ca1ca2ca8 plants was not sufficient to sustain the C4 CCM.


Assuntos
Dióxido de Carbono , Anidrases Carbônicas , Carbono , Isótopos de Carbono , Anidrases Carbônicas/metabolismo , Fotossíntese/genética , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Zea mays/metabolismo
2.
Plant Biotechnol J ; 19(11): 2291-2303, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34328250

RESUMO

The engineering of C4 photosynthetic activity into the C3 plant rice has the potential to nearly double rice yields. To engineer a two-cell photosynthetic system in rice, the rice bundle sheath (BS) must be rewired to enhance photosynthetic capacity. Here, we show that BS chloroplast biogenesis is enhanced when the transcriptional activator, Oryza sativa Cytokinin GATA transcription factor 1 (OsCGA1), is driven by a vascular specific promoter. Ectopic expression of OsCGA1 resulted in increased BS chloroplast planar area and increased expression of photosynthesis-associated nuclear genes (PhANG), required for the biogenesis of photosynthetically active chloroplasts in BS cells of rice. A further refinement using a DNAse dead Cas9 (dCas9) activation module driven by the same cell-type specific promoter, directed enhanced chloroplast development of the BS cells when gRNA sequences were delivered by the dCas9 module to the promoter of the endogenous OsCGA1 gene. Single gRNA expression was sufficient to mediate the transactivation of both the endogenous gene and a transgenic GUS reporter fused with OsCGA1 promoter. Our results illustrate the potential for tissue-specific dCas9-activation and the co-regulation of genes needed for multistep engineering of C4 rice.


Assuntos
Oryza , Cloroplastos/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Fotossíntese/genética , Folhas de Planta , Regiões Promotoras Genéticas/genética
3.
Plant Biotechnol J ; 19(3): 575-588, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33016576

RESUMO

Introduction of a C4 photosynthetic mechanism into C3 crops offers an opportunity to improve photosynthetic efficiency, biomass and yield in addition to potentially improving nitrogen and water use efficiency. To create a two-cell metabolic prototype for an NADP-malic enzyme type C4 rice, we transformed Oryza sativa spp. japonica cultivar Kitaake with a single construct containing the coding regions of carbonic anhydrase, phosphoenolpyruvate (PEP) carboxylase, NADP-malate dehydrogenase, pyruvate orthophosphate dikinase and NADP-malic enzyme from Zea mays, driven by cell-preferential promoters. Gene expression, protein accumulation and enzyme activity were confirmed for all five transgenes, and intercellular localization of proteins was analysed. 13 CO2 labelling demonstrated a 10-fold increase in flux though PEP carboxylase, exceeding the increase in measured in vitro enzyme activity, and estimated to be about 2% of the maize photosynthetic flux. Flux from malate via pyruvate to PEP remained low, commensurate with the low NADP-malic enzyme activity observed in the transgenic lines. Physiological perturbations were minor and RNA sequencing revealed no substantive effects of transgene expression on other endogenous rice transcripts associated with photosynthesis. These results provide promise that, with enhanced levels of the C4 proteins introduced thus far, a functional C4 pathway is achievable in rice.


Assuntos
Oryza , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Oryza/genética , Oryza/metabolismo , Fosfoenolpiruvato Carboxilase/genética , Fosfoenolpiruvato Carboxilase/metabolismo , Fotossíntese , Piruvato Ortofosfato Diquinase/genética , Piruvato Ortofosfato Diquinase/metabolismo , Zea mays/metabolismo
4.
Photosynth Res ; 142(2): 153-167, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31325077

RESUMO

The engineering process of C4 photosynthesis into C3 plants requires an increased activity of phosphoenolpyruvate carboxylase (PEPC) in the cytosol of leaf mesophyll cells. The literature varies on the physiological effect of transgenic maize (Zea mays) PEPC (ZmPEPC) leaf expression in Oryza sativa (rice). Therefore, to address this issue, leaf-atmosphere CO2 and 13CO2 exchanges were measured, both in the light (at atmospheric O2 partial pressure of 1.84 kPa and at different CO2 levels) and in the dark, in transgenic rice expressing ZmPEPC and wild-type (WT) plants. The in vitro PEPC activity was 25 times higher in the PEPC overexpressing (PEPC-OE) plants (~20% of maize) compared to the negligible activity in WT. In the PEPC-OE plants, the estimated fraction of carboxylation by PEPC (ß) was ~6% and leaf net biochemical discrimination against 13CO2[Formula: see text] was ~ 2‰ lower than in WT. However, there were no differences in leaf net CO2 assimilation rates (A) between genotypes, while the leaf dark respiration rates (Rd) over three hours after light-dark transition were enhanced (~ 30%) and with a higher 13C composition [Formula: see text] in the PEPC-OE plants compared to WT. These data indicate that ZmPEPC in the PEPC-OE rice plants contributes to leaf carbon metabolism in both the light and in the dark. However, there are some factors, potentially posttranslational regulation and PEP availability, which reduce ZmPEPC activity in vivo.


Assuntos
Atmosfera/química , Dióxido de Carbono/metabolismo , Isótopos de Carbono/química , Oryza/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Folhas de Planta/metabolismo , Zea mays/enzimologia , Zea mays/genética , Respiração Celular , Malatos/metabolismo , Células do Mesofilo/metabolismo , Fotossíntese , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
5.
J Exp Bot ; 70(10): 2773-2786, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30840760

RESUMO

The influence of reduced glycine decarboxylase complex (GDC) activity on leaf atmosphere CO2 and 13CO2 exchange was tested in transgenic Oryza sativa with the GDC H-subunit knocked down in leaf mesophyll cells. Leaf measurements on transgenic gdch knockdown and wild-type plants were carried out in the light under photorespiratory and low photorespiratory conditions (i.e. 18.4 kPa and 1.84 kPa atmospheric O2 partial pressure, respectively), and in the dark. Under approximately current ambient O2 partial pressure (18.4 kPa pO2), the gdch knockdown plants showed an expected photorespiratory-deficient phenotype, with lower leaf net CO2 assimilation rates (A) than the wild-type. Additionally, under these conditions, the gdch knockdown plants had greater leaf net discrimination against 13CO2 (Δo) than the wild-type. This difference in Δo was in part due to lower 13C photorespiratory fractionation (f) ascribed to alternative decarboxylation of photorespiratory intermediates. Furthermore, the leaf dark respiration rate (Rd) was enhanced and the 13CO2 composition of respired CO2 (δ13CRd) showed a tendency to be more depleted in the gdch knockdown plants. These changes in Rd and δ13CRd were due to the amount and carbon isotopic composition of substrates available for dark respiration. These results demonstrate that impairment of the photorespiratory pathway affects leaf 13CO2 exchange, particularly the 13C decarboxylation fractionation associated with photorespiration.


Assuntos
Isótopos de Carbono/análise , Complexo Glicina Descarboxilase/genética , Oryza/genética , Fotossíntese , Proteínas de Plantas/genética , Respiração Celular , Complexo Glicina Descarboxilase/metabolismo , Oryza/enzimologia , Oryza/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
6.
J Integr Plant Biol ; 60(8): 670-690, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29664234

RESUMO

In C4 photosynthesis, pyruvate orthophosphate dikinase (PPDK) catalyzes the regeneration of phosphoenolpyruvate in the carbon shuttle pathway. Although the biochemical function of PPDK in maize is well characterized, a genetic analysis of PPDK has not been reported. In this study, we use the maize transposable elements Mutator and Ds to generate multiple mutant alleles of PPDK. Loss-of-function mutants are seedling lethal, even when plants were grown under 2% CO2 , and they show very low capacity for CO2 assimilation, indicating C4 photosynthesis is essential in maize. Using RNA-seq and GC-MS technologies, we examined the transcriptional and metabolic responses to a deficiency in PPDK activity. These results indicate loss of PPDK results in downregulation of gene expression of enzymes of the C4 cycle, the Calvin cycle, and components of photochemistry. Furthermore, the loss of PPDK did not change Kranz anatomy, indicating that this metabolic defect in the C4 cycle did not impinge on the morphological differentiation of C4 characters. However, sugar metabolism and nitrogen utilization were altered in the mutants. An interaction between light intensity and genotype was also detected from transcriptome profiling, suggesting altered transcriptional and metabolic responses to environmental and endogenous signals in the PPDK mutants.


Assuntos
Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Folhas de Planta/genética , Proteínas de Plantas/genética , Zea mays/genética
7.
Plant Physiol ; 162(3): 1632-51, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23669746

RESUMO

The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.


Assuntos
Oryza/metabolismo , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Transpiração Vegetal , Análise de Variância , Dióxido de Carbono/metabolismo , Tamanho Celular , Células do Mesofilo , Herança Multifatorial , Oryza/anatomia & histologia , Folhas de Planta/ultraestrutura , Análise de Componente Principal
8.
Tree Physiol ; 28(9): 1407-19, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18595853

RESUMO

A broadleaf mixed forest diversified through partial tree thinning was studied to identify expedient sampling and data analysis procedures to capture the heterogeneous within-canopy downward distribution of instantaneous global photosynthetic photon flux (PPF); to extract foliage structural properties from the acquired light values; and to compute statistics descriptive of the within-canopy light and leaf layer distributions. We sampled PPF at 1-m intervals along vertical gradients using a helium-filled balloon as a platform for a light sensor. A random method was used to identify the forest floor locations for the within-canopy balloon ascents. About 400 PPF measurements were recorded per vertical transect. For each PPF value, we computed, by inversion of the Monsi-Saeki model, the number of leaf strata cumulated along the sunbeam direction from the position where the light was measured. Variability in PPF and leaf layer at different vegetation scales was computed by non-parametric statistics. The methods were evaluated as appropriate for intra-canopy PPF sampling, particularly in an undisturbed canopy. The minimum number of vertical PPF profiles required to capture the within-canopy PPF variability was 9-10 (equivalent to about 4000 measurements). The reliability and sensitivity of the inversion of the Monsi-Saeki method were sufficient to capture the canopy structural differences between undisturbed and partially thinned forests. The proposed PPF canopy sampling and data analysis procedures provide a fast, reliable and inexpensive way to characterize tree crown structure, and to predict plant growth and forest dynamics and could be applied whenever vegetation absorbed radiation is a main driving force for forest canopy processes. The experimental light attenuation data and the extracted canopy leaf layer numbers could serve to corroborate canopy mechanistic models of radiative transfer and net primary production.


Assuntos
Ecossistema , Modelos Biológicos , Folhas de Planta , Luz Solar , Árvores/anatomia & histologia
9.
Tree Physiol ; 27(8): 1073-82, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17472934

RESUMO

Two-year-old Fagus sylvatica L. saplings were planted under the cover of a Pinus sylvestris L. stand in the French Massif Central. The stand was differentially thinned to obtain a gradient of transmitted photosynthetically active radiation (PAR(t); 0-0.35). Eighteen Fagus saplings were sampled in this gradient, and their growth (basal stem diameter increment) was recorded over six years. Over the same period, morphological parameters (leaf area, number and arrangement in space) were monitored by 3D-digitization. Photosynthetic parameters were estimated with a portable gas-exchange analyzer. Photosynthesis was mainly related to light availability, whereas sapling morphology was mainly driven by sapling size. Annual stem diameter increment was related to the amount of light-intercepting foliage (silhouette to total leaf area ratio (STAR) x total sapling leaf area (LA)) and light availability above the saplings (PAR(t)). However, light-use efficiency, i.e., the slope of the relationship between STAR x LA x PAR(t) and stem diameter increment, decreased over time as a result of a relative decrease in the proportion of photosynthetic tissues to total sapling biomass.


Assuntos
Carboidratos/biossíntese , Fagus/crescimento & desenvolvimento , Luz , Fotossíntese/fisiologia , Árvores/crescimento & desenvolvimento , Carbono/metabolismo , Fagus/metabolismo , Pinus sylvestris/fisiologia , Folhas de Planta/metabolismo , Árvores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA