RESUMO
Circular RNAs (circRNAs) are a large class of noncoding RNAs. Despite the identification of thousands of circular transcripts, the biological significance of most of them remains unexplored, partly because of the lack of effective methods for generating loss-of-function animal models. In this study, we focused on circTulp4, an abundant circRNA derived from the Tulp4 gene that is enriched in the brain and synaptic compartments. By creating a circTulp4-deficient mouse model, in which we mutated the splice acceptor site responsible for generating circTulp4 without affecting the linear mRNA or protein levels, we were able to conduct a comprehensive phenotypic analysis. Our results demonstrate that circTulp4 is critical in regulating neuronal and brain physiology, modulating the strength of excitatory neurotransmission and sensitivity to aversive stimuli. This study provides evidence that circRNAs can regulate biologically relevant functions in neurons, with modulatory effects at multiple levels of the phenotype, establishing a proof of principle for the regulatory role of circRNAs in neural processes.
Assuntos
Encéfalo , RNA Circular , Transmissão Sináptica , RNA Circular/genética , Animais , Camundongos , Encéfalo/metabolismo , Encéfalo/fisiologia , Camundongos Knockout , Neurônios/metabolismo , Neurônios/fisiologiaRESUMO
A subset of circular RNAs (circRNAs) and linear RNAs have been proposed to 'sponge' or block microRNA activity. Additionally, certain RNAs induce microRNA destruction through the process of Target RNA-Directed MicroRNA Degradation (TDMD), but whether both linear and circular transcripts are equivalent in driving TDMD is unknown. Here, we studied whether circular/linear topology of endogenous and artificial RNA targets affects TDMD. Consistent with previous knowledge that Cdr1as (ciRS-7) circular RNA protects miR-7 from Cyrano-mediated TDMD, we demonstrate that depletion of Cdr1as reduces miR-7 abundance. In contrast, overexpression of an artificial linear version of Cdr1as drives miR-7 degradation. Using plasmids that express a circRNA with minimal co-expressed cognate linear RNA, we show differential effects on TDMD that cannot be attributed to the nucleotide sequence, as the TDMD properties of a sequence often differ when in a circular versus linear form. By analysing RNA sequencing data of a neuron differentiation system, we further detect potential effects of circRNAs on microRNA stability. Our results support the view that RNA circularity influences TDMD, either enhancing or inhibiting it on specific microRNAs.
Assuntos
MicroRNAs , Estabilidade de RNA , RNA Circular , MicroRNAs/genética , MicroRNAs/metabolismo , RNA/genética , RNA/metabolismo , RNA Circular/metabolismo , Humanos , Animais , CamundongosRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Neddylation is the post-translational protein modification most closely related to ubiquitination. Whereas the ubiquitin-like protein NEDD8 is well studied for its role in activating cullin-RING E3 ubiquitin ligases, little is known about other substrates. We developed serial NEDD8-ubiquitin substrate profiling (sNUSP), a method that employs NEDD8 R74K knock-in HEK293 cells, allowing discrimination of endogenous NEDD8- and ubiquitin-modification sites by MS after Lys-C digestion and K-εGG-peptide enrichment. Using sNUSP, we identified 607 neddylation sites dynamically regulated by the neddylation inhibitor MLN4924 and the de-neddylating enzyme NEDP1, implying that many non-cullin proteins are neddylated. Among the candidates, we characterized lysine 112 of the actin regulator cofilin as a novel neddylation event. Global inhibition of neddylation in developing neurons leads to cytoskeletal defects, altered actin dynamics and neurite growth impairments, whereas site-specific neddylation of cofilin at K112 regulates neurite outgrowth, suggesting that cofilin neddylation contributes to the regulation of neuronal actin organization.
Assuntos
Actinas/metabolismo , Cofilina 1/metabolismo , Proteína NEDD8/metabolismo , Neurônios/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteína NEDD8/genética , Neurônios/citologia , Mutação Puntual , Ratos , Ratos Sprague-Dawley , Ubiquitina/metabolismo , UbiquitinaçãoRESUMO
Neddylation is a ubiquitylation-like pathway that controls cell cycle and proliferation by covalently conjugating Nedd8 to specific targets. However, its role in neurons, nonreplicating postmitotic cells, remains unexplored. Here we report that Nedd8 conjugation increased during postnatal brain development and is active in mature synapses, where many proteins are neddylated. We show that neddylation controls spine development during neuronal maturation and spine stability in mature neurons. We found that neddylated PSD-95 was present in spines and that neddylation on Lys202 of PSD-95 is required for the proactive role of the scaffolding protein in spine maturation and synaptic transmission. Finally, we developed Nae1(CamKIIα-CreERT2) mice, in which neddylation is conditionally ablated in adult excitatory forebrain neurons. These mice showed synaptic loss, impaired neurotransmission and severe cognitive deficits. In summary, our results establish neddylation as an active post-translational modification in the synapse regulating the maturation, stability and function of dendritic spines.
Assuntos
Encéfalo/crescimento & desenvolvimento , Transtornos Cognitivos/metabolismo , Espinhas Dendríticas/fisiologia , Guanilato Quinases/fisiologia , Proteínas de Membrana/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Ubiquitinas/metabolismo , Animais , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Proteína 4 Homóloga a Disks-Large , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína NEDD8 , Ratos , Ratos Sprague-Dawley , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/fisiologia , Ubiquitinas/antagonistas & inibidoresRESUMO
MicroRNAs (miRNAs) are conserved noncoding RNAs that function as posttranscriptional regulators of gene expression. miR-9 is one of the most abundant miRNAs in the brain. Although the function of miR-9 has been well characterized in neural progenitors, its role in dendritic and synaptic development remains largely unknown. In order to target miR-9 in vivo, we developed a transgenic miRNA sponge mouse line allowing conditional inactivation of the miR-9 family in a spatio-temporal-controlled manner. Using this novel approach, we found that miR-9 controls dendritic growth and synaptic transmission in vivo. Furthermore, we demonstrate that miR-9-mediated downregulation of the transcriptional repressor REST is essential for proper dendritic growth.
Assuntos
Dendritos/metabolismo , MicroRNAs/metabolismo , Proteínas Repressoras/metabolismo , Envelhecimento/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Genes Reporter , Células HEK293 , Humanos , Integrases/metabolismo , Camundongos Transgênicos , MicroRNAs/genética , Nestina/metabolismo , Neurônios/metabolismo , Transmissão SinápticaRESUMO
Genetic mouse models based on the Cre-loxP system have been extensively used to explore the influence of specific gene deletions on different aspects of behavioral neurobiology. However, the interpretation of the effects attributed to the gene deletion might be obscured by potential side effects secondary to the Cre recombinase transgene insertion or Cre activity, usually neither controlled nor reported. Here, we performed a comprehensive behavioral analysis of endophenotypes of neuropsychiatric disorders in the extensively used Nestin(Cre) mouse line, commonly employed to restrict genetic modifications to the CNS. We observed no alterations in locomotion, general exploratory activity, learning and memory, sociability, startle response and sensorimotor gating. Although the overall response to stimuli triggering anxiety-like behaviors remained unaltered in Nestin(Cre) mice, a strong impairment in the acquisition of both contextual- and cued-conditioned fear was observed. These results underline the importance of adequately controlling the behavioral performance of the employed Cre-lines per-se in pre-clinical neurobehavioral research.
Assuntos
Comportamento Animal , Modelos Animais de Doenças , Endofenótipos , Transtornos Mentais/psicologia , Camundongos Transgênicos , Animais , Ansiedade , Encéfalo/metabolismo , Condicionamento Psicológico , Comportamento Exploratório , Medo , Integrases/genética , Integrases/metabolismo , Aprendizagem , Masculino , Memória , Transtornos Mentais/genética , Atividade Motora , Nestina/genética , Testes Neuropsicológicos , Reflexo de Sobressalto , Filtro Sensorial , Comportamento SocialRESUMO
Motor neurons in the vertebrate spinal cord are stereotypically organized along the rostro-caudal axis in discrete columns that specifically innervate peripheral muscle domains. Originating from the same progenitor domain, the generation of spinal motor neurons is orchestrated by a spatially and temporally tightly regulated set of secreted molecules and transcription factors such as retinoic acid and the Lim homeodomain transcription factors Isl1 and Lhx1. However, the molecular interactions between these factors remained unclear. In this study we examined the role of the microRNA 9 (miR-9) in the specification of spinal motor neurons and identified Onecut1 (OC1) as one of its targets. miR-9 and OC1 are expressed in mutually exclusive patterns in the developing chick spinal cord, with high OC1 levels in early-born motor neurons and high miR-9 levels in late-born motor neurons. miR-9 efficiently represses OC1 expression in vitro and in vivo. Overexpression of miR-9 leads to an increase in late-born neurons, while miR-9 loss-of-function induces additional OC1(+) motor neurons that display a transcriptional profile typical of early-born neurons. These results demonstrate that regulation of OC1 by miR-9 is a crucial step in the specification of spinal motor neurons and support a model in which miR-9 expression in late-born LMCl neurons downregulates Isl1 expression through inhibition of OC1. In conclusion, our study contributes essential factors to the molecular network specifying spinal motor neurons and emphasizes the importance of microRNAs as key players in the generation of neuronal diversity.