RESUMO
Nonhuman primates (NHPs), especially rhesus macaques, have significantly contributed to our understanding of the neural computations underlying human vision. Besides the established homologies in the visual brain areas between these species and our ability to probe detailed neural mechanisms in monkeys at multiple scales, NHPs' ability to perform human-like visual behavior makes them an extremely appealing animal model of human vision. Traditionally, such behavioral studies have been conducted in controlled laboratory settings, offering experimenters tight control over variables like luminance, eye movements, and auditory interference. However, in-lab experiments have several constraints, including limited experimental time, the need for dedicated human experimenters, additional lab space requirements, invasive surgeries for headpost implants, and extra time and training for chairing and head restraints. To overcome these limitations, we propose adopting home-cage behavioral training and testing of NHPs, enabling the administration of many vision-based behavioral tasks simultaneously across multiple monkeys with reduced human personnel requirements, no NHP head restraint, and monkeys' unrestricted access to experiments. In this article, we present a portable, low-cost, easy-to-use kiosk system developed to conduct home-cage vision-based behavioral tasks in NHPs. We provide details of its operation and build to enable more open-source development of this technology. Furthermore, we present validation results using behavioral measurements performed in the lab and in NHP home cages, demonstrating the system's reliability and potential to enhance the efficiency and flexibility of NHP behavioral research.NEW & NOTEWORTHY Training nonhuman primates (NHPs) for vision-based behavioral tasks in a laboratory setting is a time-consuming process and comes with many limitations. To overcome these challenges, we have developed an affordable, open-source, wireless, touchscreen training system that can be placed in the NHPs' housing environment. This system enables NHPs to work at their own pace. It provides a platform to implement continuous behavioral training protocols without major experimenter intervention and eliminates the need for other standard practices like NHP chair training, collar placement, and head restraints. Hence, these kiosks ultimately contribute to animal welfare and therefore better-quality neuroscience in the long run. In addition, NHPs quickly learn complex behavioral tasks using this system, making it a promising tool for wireless electrophysiological research in naturalistic, unrestricted environments to probe the relation between brain and behavior.