Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuron ; 112(8): 1249-1264.e8, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366598

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by cytoplasmic deposition of the nuclear TAR-binding protein 43 (TDP-43). Although cytoplasmic re-localization of TDP-43 is a key event in the pathogenesis of ALS/FTD, the underlying mechanisms remain unknown. Here, we identified a non-canonical interaction between 14-3-3θ and TDP-43, which regulates nuclear-cytoplasmic shuttling. Neuronal 14-3-3θ levels were increased in sporadic ALS and FTD with TDP-43 pathology. Pathogenic TDP-43 showed increased interaction with 14-3-3θ, resulting in cytoplasmic accumulation, insolubility, phosphorylation, and fragmentation of TDP-43, resembling pathological changes in disease. Harnessing this increased affinity of 14-3-3θ for pathogenic TDP-43, we devised a gene therapy vector targeting TDP-43 pathology, which mitigated functional deficits and neurodegeneration in different ALS/FTD mouse models expressing mutant or non-mutant TDP-43, including when already symptomatic at the time of treatment. Our study identified 14-3-3θ as a mediator of cytoplasmic TDP-43 localization with implications for ALS/FTD pathogenesis and therapy.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/metabolismo , Neurônios/metabolismo
2.
Nat Commun ; 8(1): 473, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883427

RESUMO

Neuronal excitotoxicity induced by aberrant excitation of glutamatergic receptors contributes to brain damage in stroke. Here we show that tau-deficient (tau-/-) mice are profoundly protected from excitotoxic brain damage and neurological deficits following experimental stroke, using a middle cerebral artery occlusion with reperfusion model. Mechanistically, we show that this protection is due to site-specific inhibition of glutamate-induced and Ras/ERK-mediated toxicity by accumulation of Ras-inhibiting SynGAP1, which resides in a post-synaptic complex with tau. Accordingly, reducing SynGAP1 levels in tau-/- mice abolished the protection from pharmacologically induced excitotoxicity and middle cerebral artery occlusion-induced brain damage. Conversely, over-expression of SynGAP1 prevented excitotoxic ERK activation in wild-type neurons. Our findings suggest that tau mediates excitotoxic Ras/ERK signaling by controlling post-synaptic compartmentalization of SynGAP1.Excitotoxicity contributes to neuronal injury following stroke. Here the authors show that tau promotes excitotoxicity by a post-synaptic mechanism, involving site-specific control of ERK activation, in a mouse model of stroke.


Assuntos
Lesões Encefálicas/genética , Modelos Animais de Doenças , Acidente Vascular Cerebral/genética , Proteínas tau/genética , Animais , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Humanos , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Transdução de Sinais/genética , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/metabolismo , Sinaptossomos/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas tau/deficiência
3.
ACS Chem Neurosci ; 8(4): 743-751, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28067492

RESUMO

In Alzheimer's disease, the microtubule-associated protein tau forms intracellular neurofibrillary tangles (NFTs). A critical step in the formation of NFTs is the conversion of soluble tau into insoluble filaments. Accordingly, a current therapeutic strategy in clinical trials is aimed at preventing tau aggregation. Here, we assessed altenusin, a bioactive polyphenolic compound, for its potential to inhibit tau aggregation. Altenusin inhibits aggregation of tau protein into paired helical filaments in vitro. This was associated with stabilization of tau dimers and other oligomers into globular structures as revealed by atomic force microscopy. Moreover, altenusin reduced tau phosphorylation in cells expressing pathogenic tau, and prevented neuritic tau pathology induced by incubation of primary neurons with tau fibrils. However, treatment of tau transgenic mice did not improve neuropathology and functional deficits. Taken together, altenusin prevents tau fibrillization in vitro and induced tau pathology in neurons.


Assuntos
Compostos de Bifenilo/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Agregação Patológica de Proteínas/prevenção & controle , Proteínas tau/metabolismo , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Microscopia de Força Atômica , Emaranhados Neurofibrilares/efeitos dos fármacos , Emaranhados Neurofibrilares/patologia , Neurônios/patologia
4.
Science ; 354(6314): 904-908, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27856911

RESUMO

Amyloid-ß (Aß) toxicity in Alzheimer's disease (AD) is considered to be mediated by phosphorylated tau protein. In contrast, we found that, at least in early disease, site-specific phosphorylation of tau inhibited Aß toxicity. This specific tau phosphorylation was mediated by the neuronal p38 mitogen-activated protein kinase p38γ and interfered with postsynaptic excitotoxic signaling complexes engaged by Aß. Accordingly, depletion of p38γ exacerbated neuronal circuit aberrations, cognitive deficits, and premature lethality in a mouse model of AD, whereas increasing the activity of p38γ abolished these deficits. Furthermore, mimicking site-specific tau phosphorylation alleviated Aß-induced neuronal death and offered protection from excitotoxicity. Our work provides insights into postsynaptic processes in AD pathogenesis and challenges a purely pathogenic role of tau phosphorylation in neuronal toxicity.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Neurotoxinas/antagonistas & inibidores , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Animais , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteína Quinase 12 Ativada por Mitógeno/genética , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Transdução de Sinais
5.
Proc Natl Acad Sci U S A ; 113(16): E2306-15, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27044077

RESUMO

Current approaches in tissue engineering are geared toward generating tissue-specific stem cells. Given the complexity and heterogeneity of tissues, this approach has its limitations. An alternate approach is to induce terminally differentiated cells to dedifferentiate into multipotent proliferative cells with the capacity to regenerate all components of a damaged tissue, a phenomenon used by salamanders to regenerate limbs. 5-Azacytidine (AZA) is a nucleoside analog that is used to treat preleukemic and leukemic blood disorders. AZA is also known to induce cell plasticity. We hypothesized that AZA-induced cell plasticity occurs via a transient multipotent cell state and that concomitant exposure to a receptive growth factor might result in the expansion of a plastic and proliferative population of cells. To this end, we treated lineage-committed cells with AZA and screened a number of different growth factors with known activity in mesenchyme-derived tissues. Here, we report that transient treatment with AZA in combination with platelet-derived growth factor-AB converts primary somatic cells into tissue-regenerative multipotent stem (iMS) cells. iMS cells possess a distinct transcriptome, are immunosuppressive, and demonstrate long-term self-renewal, serial clonogenicity, and multigerm layer differentiation potential. Importantly, unlike mesenchymal stem cells, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner and, unlike embryonic or pluripotent stem cells, do not form teratomas. Taken together, this vector-free method of generating iMS cells from primary terminally differentiated cells has significant scope for application in tissue regeneration.


Assuntos
Azacitidina/farmacologia , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Animais , Células Cultivadas , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos/fisiologia
6.
PLoS One ; 11(2): e0148503, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26870954

RESUMO

The intraluminal filament model of middle cerebral artery occlusion (MCAO) in mice and rats has been plagued by inconsistency, owing in part to the multitude of variables requiring control. In this study we investigated the impact of several major variables on survival rate, lesion volume, neurological scores, cerebral blood flow (CBF) and body weight including filament width, time after reperfusion, occlusion time and the choice of surgical method. Using the Koizumi method, we found ischemic injury can be detected as early as 30 min after reperfusion, to a degree that is not statistically different from 24 h post-perfusion, using 2,3,5-Triphenyltetrazolium chloride (TTC) staining. We also found a distinct increase in total lesion volume with increasing occlusion time, with 30-45 min a critical time for the development of large, reproducible lesions. Furthermore, although we found no significant difference in total lesion volume generated by the Koizumi and Longa methods of MCAO, nor were survival rates appreciably different between the two at 4 h after reperfusion, the Longa method produces significantly greater reperfusion. Finally, we found no statistical evidence to support the exclusion of data from animals experiencing a CBF reduction of <70% in the MCA territory following MCAO, using laser-Doppler flowmetry. Instead we suggest the main usefulness of laser-Doppler flowmetry is for guiding filament placement and the identification of subarachnoid haemorrhages and premature reperfusion. In summary, this study provides detailed evaluation of the Koizumi method of intraluminal filament MCAO in mice and a direct comparison to the Longa method.


Assuntos
Isquemia Encefálica/diagnóstico , Oclusão Coronária/diagnóstico , Artéria Cerebral Média/patologia , Traumatismo por Reperfusão/diagnóstico , Hemorragia Subaracnóidea/diagnóstico , Animais , Peso Corporal , Isquemia Encefálica/mortalidade , Isquemia Encefálica/patologia , Circulação Cerebrovascular , Corantes/química , Oclusão Coronária/mortalidade , Oclusão Coronária/patologia , Modelos Animais de Doenças , Fluxometria por Laser-Doppler , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Artéria Cerebral Média/cirurgia , Traumatismo por Reperfusão/mortalidade , Traumatismo por Reperfusão/patologia , Hemorragia Subaracnóidea/mortalidade , Hemorragia Subaracnóidea/patologia , Análise de Sobrevida , Sais de Tetrazólio/química
7.
Acta Neuropathol ; 130(5): 661-78, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26437864

RESUMO

The nuclear transactive response DNA-binding protein 43 (TDP-43) undergoes relocalization to the cytoplasm with formation of cytoplasmic deposits in neurons in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Pathogenic mutations in the TDP-43-encoding TARDBP gene in familial ALS as well as non-mutant human TDP-43 have been utilized to model FTD/ALS in cell culture and animals, including mice. Here, we report novel A315T mutant TDP-43 transgenic mice, iTDP-43(A315T), with controlled neuronal over-expression. Constitutive expression of human TDP-43(A315T) resulted in pronounced early-onset and progressive neurodegeneration, which was associated with compromised motor performance, spatial memory and disinhibition. Muscle atrophy resulted in reduced grip strength. Cortical degeneration presented with pronounced astrocyte activation. Using differential protein extraction from iTDP-43(A315T) brains, we found cytoplasmic localization, fragmentation, phosphorylation and ubiquitination and insolubility of TDP-43. Surprisingly, suppression of human TDP-43(A315T) expression in mice with overt neurodegeneration for only 1 week was sufficient to significantly improve motor and behavioral deficits, and reduce astrogliosis. Our data suggest that functional deficits in iTDP-43(A315T) mice are at least in part a direct and transient effect of the presence of TDP-43(A315T). Furthermore, it illustrates the compensatory capacity of compromised neurons once transgenic TDP-43 is removed, with implications for future treatments.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/fisiopatologia , Mutação , Recuperação de Função Fisiológica/fisiologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/patologia , Astrócitos/fisiologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Doxiciclina , Feminino , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Gliose/patologia , Gliose/fisiopatologia , Força da Mão/fisiologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Memória Espacial/fisiologia
8.
Neuropathol Appl Neurobiol ; 41(7): 906-25, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25763777

RESUMO

AIM: Tau becomes hyperphosphorylated in Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD-tau), resulting in functional deficits of neurones, neurofibrillary tangle (NFT) formation and eventually dementia. Expression of mutant human tau in the brains of transgenic mice has produced different lines that recapitulate various aspects of FTLD-tau and AD. In this study, we characterized the novel P301S mutant tau transgenic mouse line, TAU58/2. METHODS: Both young and aged TAU58/2 mice underwent extensive motor testing, after which brain tissue was analysed with immunohistochemistry, silver staining, electron microscopy and Western blotting. Tissue from various FTLD subtypes and AD patients was also analysed for comparison. RESULTS: TAU58/2 mice presented with early-onset motor deficits, which became more pronounced with age. Throughout the brains of these mice, tau was progressively hyperphosphorylated resulting in increased NFT formation with age. In addition, frequent axonal swellings that stained intensively for neurofilament (NF) were present in young TAU58/2 mice prior to NFT formation. Similar axonal pathology was also observed in human FTLD-tau and AD. Interestingly, activated microglia were found in close proximity to neurones harbouring transgenic tau, but were not associated with NF-positive axonal swellings. CONCLUSIONS: In TAU58/2 mice, early tau pathology induces functional deficits of neurones associated with NF pathology. This appears to be specific to tau, as similar changes are observed in FTLD-tau, but not in FTLD with TDP-43 inclusions. Therefore, TAU58/2 mice recapitulate aspects of human FTLD-tau and AD pathology, and will become instrumental in studying disease mechanisms and therapeutics in the future.


Assuntos
Axônios/patologia , Encéfalo/patologia , Degeneração Lobar Frontotemporal/patologia , Neurônios/patologia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
9.
Acta Neuropathol Commun ; 2: 149, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25331068

RESUMO

Hypersynchronicity of neuronal brain circuits is a feature of Alzheimer's disease (AD). Mouse models of AD expressing mutated forms of the amyloid-ß precursor protein (APP), a central protein involved in AD pathology, show cortical hypersynchronicity. We studied hippocampal circuitry in APP23 transgenic mice using telemetric electroencephalography (EEG), at the age of onset of memory deficits. APP23 mice display spontaneous hypersynchronicity in the hippocampus including epileptiform spike trains. Furthermore, spectral contributions of hippocampal theta and gamma oscillations are compromised in APP23 mice, compared to non-transgenic controls. Using cross-frequency coupling analysis, we show that hippocampal gamma amplitude modulation by theta phase is markedly impaired in APP23 mice. Hippocampal hypersynchronicity and waveforms are differentially modulated by injection of riluzole and the non-competitive N-methyl-D-aspartate (NMDA) receptor inhibitor MK801, suggesting specific involvement of voltage-gated sodium channels and NMDA receptors in hypersynchronicity thresholds in APP23 mice. Furthermore, APP23 mice show marked activation of p38 mitogen-activated protein (MAP) kinase in hippocampus, and injection of MK801 but not riluzole reduces activation of p38 in the hippocampus. A p38 inhibitor induces hypersynchronicity in APP23 mice to a similar extent as MK801, thus supporting suppression of hypersynchronicity involves NMDA receptors-mediated p38 activity. In summary, we characterize components of hippocampal hypersynchronicity, waveform patterns and cross-frequency coupling in the APP23 mouse model by pharmacological modulation, furthering the understanding of epileptiform brain activity in AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Hipocampo/fisiopatologia , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Eletrodos Implantados , Eletroencefalografia , Inibidores Enzimáticos/farmacologia , Epilepsia/fisiopatologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ritmo Gama , Hipocampo/efeitos dos fármacos , Imidazóis/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Piridinas/farmacologia , Riluzol/farmacologia , Ritmo Teta , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
10.
J Neural Transm (Vienna) ; 121(5): 543-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24337667

RESUMO

Ischemic stroke is a leading cause of death. It has previously been shown that blocking activation of extracellular signal-regulated kinase (ERK) with the MEK inhibitor U0126 mitigates brain damage in rodent models of ischemic stroke. Here we show that the newer MEK inhibitor PD184161 reduces cell death and altered gene expression in cultured neurons and mice undergoing excitotoxicity, and has similar protective effects in a mouse model of stroke. This further supports ERK inhibition as a potential treatment for stroke.


Assuntos
Compostos de Anilina/farmacologia , Benzamidas/farmacologia , Encéfalo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Infarto da Artéria Cerebral Média/complicações , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia
11.
PLoS One ; 6(7): e22850, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829535

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are characterized by intraneuronal deposition of the nuclear TAR DNA-binding protein 43 (TDP-43) caused by unknown mechanisms. Here, we studied TDP-43 in primary neurons under different stress conditions and found that only proteasome inhibition by MG-132 or lactacystin could induce significant cytoplasmic accumulation of TDP-43, a histopathological hallmark in disease. This cytoplasmic accumulation was accompanied by phosphorylation, ubiquitination and aggregation of TDP-43, recapitulating major features of disease. Proteasome inhibition produced similar effects in both hippocampal and cortical neurons, as well as in immortalized motor neurons. To determine the contribution of TDP-43 to cell death, we reduced TDP-43 expression using small interfering RNA (siRNA), and found that reduced levels of TDP-43 dose-dependently rendered neurons more vulnerable to MG-132. Taken together, our data suggests a role for the proteasome in subcellular localization of TDP-43, and possibly in disease.


Assuntos
Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Inibidores de Proteassoma , Animais , Western Blotting , Morte Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Inibidores de Cisteína Proteinase/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Leupeptinas/farmacologia , Camundongos , Neurônios/citologia , Fosforilação , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Frações Subcelulares , Ubiquitinação
12.
IUBMB Life ; 63(7): 495-502, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21698753

RESUMO

Both Alzheimer's disease (AD) and almost every second case of frontotemporal lobar degeneration (FTLD) are characterized by the deposition of hyperphosphorylated forms of the microtubule-associated protein tau in neurons and/or glia. This unifying pathology led to coining the umbrella term "tauopathies" for these conditions. While the deposition of tau ultimately results in the formation of typical histopathological lesions, such as the neurofibrillary tangles (NFTs) in AD, it is now well accepted that tau interferes with normal functions in neurons already before its deposition. Together with the identification of pathogenic mutations in the tau-encoding gene MAPT in FTLD and evidence from a rising number of in vivo animal models a central role of tau in neurodegeneration has emerged. Here, we review the role of pathological tau in axonal transport, mitochondrial respiration, and in mediating amyloid-ß toxicity in AD. Furthermore, we review recent findings regarding the spreading of tau pathology throughout the brain as disease progresses.


Assuntos
Doenças Neurodegenerativas/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Transporte Axonal/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Tauopatias/genética , Tauopatias/patologia , Proteínas tau/genética
13.
Cell ; 142(3): 387-97, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20655099

RESUMO

Alzheimer's disease (AD) is characterized by amyloid-beta (Abeta) and tau deposition in brain. It has emerged that Abeta toxicity is tau dependent, although mechanistically this link remains unclear. Here, we show that tau, known as axonal protein, has a dendritic function in postsynaptic targeting of the Src kinase Fyn, a substrate of which is the NMDA receptor (NR). Missorting of tau in transgenic mice expressing truncated tau (Deltatau) and absence of tau in tau(-/-) mice both disrupt postsynaptic targeting of Fyn. This uncouples NR-mediated excitotoxicity and hence mitigates Abeta toxicity. Deltatau expression and tau deficiency prevent memory deficits and improve survival in Abeta-forming APP23 mice, a model of AD. These deficits are also fully rescued with a peptide that uncouples the Fyn-mediated interaction of NR and PSD-95 in vivo. Our findings suggest that this dendritic role of tau confers Abeta toxicity at the postsynapse with direct implications for pathogenesis and treatment of AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Dendritos/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Encéfalo/patologia , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Transtornos da Memória/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Proteínas tau/genética
14.
Biochim Biophys Acta ; 1802(10): 860-71, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19751831

RESUMO

Many proteins that are implicated in human disease are posttranslationally modified. This includes the microtubule-associated protein tau that is deposited in a hyperphosphorylated form in brains of Alzheimer's disease patients. The focus of this review article is on the physiological and pathological phosphorylation of tau; the relevance of aberrant phosphorylation for disease; the role of kinases and phosphatases in this process; its modeling in transgenic mice, flies, and worms; and implications of phosphorylation for therapeutic intervention.


Assuntos
Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Proteínas tau/fisiologia , Doença de Alzheimer/patologia , Animais , Humanos , Camundongos , Fosforilação
15.
PLoS One ; 4(11): e7917, 2009 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-19936237

RESUMO

Diabetes mellitus (DM) is characterized by hyperglycemia caused by a lack of insulin, insulin resistance, or both. There is increasing evidence that insulin also plays a role in Alzheimer's disease (AD) as it is involved in the metabolism of beta-amyloid (Abeta) and tau, two proteins that form Abeta plaques and neurofibrillary tangles (NFTs), respectively, the hallmark lesions in AD. Here, we examined the effects of experimental DM on a pre-existing tau pathology in the pR5 transgenic mouse strain that is characterized by NFTs. pR5 mice express P301L mutant human tau that is associated with dementia. Experimental DM was induced by administration of streptozotocin (STZ), which causes insulin deficiency. We determined phosphorylation of tau, using immunohistochemistry and Western blotting. Solubility of tau was determined upon extraction with sarkosyl and formic acid, and Gallyas silver staining was employed to reveal NFTs. Insulin depletion by STZ administration in six months-old non-transgenic mice causes increased tau phosphorylation, without its deposition or NFT formation. In contrast, in pR5 mice this results in massive deposition of hyperphosphorylated, insoluble tau. Furthermore, they develop a pronounced tau-histopathology, including NFTs at this early age, while the pathology in sham-treated pR5 mice is moderate. Whereas experimental DM did not result in deposition of hyperphosphorylated tau in non-transgenic mice, a predisposition to develop a tau pathology in young pR5 mice was both sufficient and necessary to exacerbate tau deposition and NFT formation. Hence, DM can accelerate onset and increase severity of disease in individuals with a predisposition to developing tau pathology.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Diabetes Mellitus Experimental/metabolismo , Mutação , Proteínas tau/genética , Proteínas tau/metabolismo , Doença de Alzheimer/complicações , Animais , Glicemia/metabolismo , Comorbidade , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Formiatos/química , Humanos , Camundongos , Camundongos Transgênicos , Fosforilação , Sarcosina/análogos & derivados , Sarcosina/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA