Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diabetologia ; 64(8): 1850-1865, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34014371

RESUMO

AIMS/HYPOTHESIS: Adipocytes are critical cornerstones of energy metabolism. While obesity-induced adipocyte dysfunction is associated with insulin resistance and systemic metabolic disturbances, adipogenesis, the formation of new adipocytes and healthy adipose tissue expansion are associated with metabolic benefits. Understanding the molecular mechanisms governing adipogenesis is of great clinical potential to efficiently restore metabolic health in obesity. Here we investigate the role of heart and neural crest derivatives-expressed 2 (HAND2) in adipogenesis. METHODS: Human white adipose tissue (WAT) was collected from two cross-sectional studies of 318 and 96 individuals. In vitro, for mechanistic experiments we used primary adipocytes from humans and mice as well as human multipotent adipose-derived stem (hMADS) cells. Gene silencing was performed using siRNA or genetic inactivation in primary adipocytes from loxP and or tamoxifen-inducible Cre-ERT2 mouse models with Cre-encoding mRNA or tamoxifen, respectively. Adipogenesis and adipocyte metabolism were measured by Oil Red O staining, quantitative PCR (qPCR), microarray, glucose uptake assay, western blot and lipolysis assay. A combinatorial RNA sequencing (RNAseq) and ChIP qPCR approach was used to identify target genes regulated by HAND2. In vivo, we created a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter (Hand2AdipoqCre) and performed a large panel of metabolic tests. RESULTS: We found that HAND2 is an obesity-linked white adipocyte transcription factor regulated by glucocorticoids that was necessary but insufficient for adipocyte differentiation in vitro. In a large cohort of humans, WAT HAND2 expression was correlated to BMI. The HAND2 gene was enriched in white adipocytes compared with brown, induced early in differentiation and responded to dexamethasone (DEX), a typical glucocorticoid receptor (GR, encoded by NR3C1) agonist. Silencing of NR3C1 in hMADS cells or deletion of GR in a transgenic conditional mouse model results in diminished HAND2 expression, establishing that adipocyte HAND2 is regulated by glucocorticoids via GR in vitro and in vivo. Furthermore, we identified gene clusters indirectly regulated by the GR-HAND2 pathway. Interestingly, silencing of HAND2 impaired adipocyte differentiation in hMADS and primary mouse adipocytes. However, a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter did not mirror these effects on adipose tissue differentiation, indicating that HAND2 was required at stages prior to Adipoq expression. CONCLUSIONS/INTERPRETATION: In summary, our study identifies HAND2 as a novel obesity-linked adipocyte transcription factor, highlighting new mechanisms of GR-dependent adipogenesis in humans and mice. DATA AVAILABILITY: Array data have been submitted to the GEO database at NCBI (GSE148699).


Assuntos
Adipócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica/fisiologia , Glucocorticoides/farmacologia , Obesidade/genética , Fatores de Transcrição/genética , Adipogenia/fisiologia , Tecido Adiposo Marrom/metabolismo , Adulto , Idoso , Animais , Estudos Transversais , Feminino , Inativação Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Adulto Jovem
2.
EMBO Rep ; 20(11): e48552, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31559673

RESUMO

Aberrant activity of the glucocorticoid (GC)/glucocorticoid receptor (GR) endocrine system has been linked to obesity-related metabolic dysfunction. Traditionally, the GC/GR axis has been believed to play a crucial role in adipose tissue formation and function in both, white (WAT) and brown adipose tissue (BAT). While recent studies have challenged this notion for WAT, the contribution of GC/GR signaling to BAT-dependent energy homeostasis remained unknown. Here, we have generated and characterized a BAT-specific GR-knockout mouse (GRBATKO ), for the first time allowing to genetically interrogate the metabolic impact of BAT-GR. The HPA axis in GRBATKO mice was intact, as was the ability of mice to adapt to cold. BAT-GR was dispensable for the adaptation to fasting-feeding cycles and the development of diet-induced obesity. In obesity, glucose and lipid metabolism, insulin sensitivity, and food intake remained unchanged, aligning with the absence of changes in thermogenic gene expression. Together, we demonstrate that the GR in UCP1-positive BAT adipocytes plays a negligible role in systemic metabolism and BAT function, thereby opposing a long-standing paradigm in the field.


Assuntos
Adipócitos Marrons/metabolismo , Metabolismo Energético , Homeostase , Receptores de Glucocorticoides/metabolismo , Animais , Peso Corporal , Resposta ao Choque Frio , Jejum , Camundongos , Camundongos Knockout
3.
FASEB J ; 33(5): 5924-5941, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30742779

RESUMO

The glucocorticoid receptor (GR) represents the crucial molecular mediator of key endocrine, glucocorticoid hormone-dependent regulatory circuits, including control of glucose, protein, and lipid homeostasis. Consequently, aberrant glucocorticoid signaling is linked to severe metabolic disorders, including insulin resistance, obesity, and hyperglycemia, all of which also appear upon chronic glucocorticoid therapy for the treatment of inflammatory conditions. Of note, long-term glucocorticoid exposure under these therapeutic conditions typically induces glucocorticoid resistance, requiring higher doses and consequently triggering more severe metabolic phenotypes. However, the molecular basis of acquired glucocorticoid resistance remains unknown. In a screen of differential microRNA expression during glucocorticoid-dependent adipogenic differentiation of human multipotent adipose stem cells, we identified microRNA 29a (miR-29a) as one of the most down-regulated transcripts. Overexpression of miR-29a impaired adipogenesis. We found that miR-29a represses GR in human adipogenesis by directly targeting its mRNA, and downstream analyses revealed that GR mediates most of miR-29a's anti-adipogenic effects. Conversely, miR-29a expression depends on GR activation, creating a novel miR-29-driven feedback loop. miR-29a and GR expression were inversely correlated both in murine adipose tissue and in adipose tissue samples obtained from human patients. In the latter, miR-29a levels were additionally strongly negatively correlated with body mass index and adipocyte size. Importantly, inhibition of miR-29 in mice partially rescued the down-regulation of GR during dexamethasone treatment. We discovered that, in addition to modulating GR function under physiologic conditions, pharmacologic glucocorticoid application in inflammatory disease also induced miR-29a expression, correlating with reduced GR levels. This effect was abolished in mice with impaired GR function. In summary, we uncovered a novel GR-miR-29a negative feedback loop conserved between mice and humans, in health and disease. For the first time, we elucidate a microRNA-related mechanism that might contribute to GR dysregulation and resistance in peripheral tissues.-Glantschnig, C., Koenen, M., Gil-Lozano, M., Karbiener, M., Pickrahn, I., Williams-Dautovich, J., Patel, R., Cummins, C. L., Giroud, M., Hartleben, G., Vogl, E., Blüher, M., Tuckermann, J., Uhlenhaut, H., Herzig, S., Scheideler, M. A miR-29a-driven negative feedback loop regulates peripheral glucocorticoid receptor signaling.


Assuntos
Adipócitos/citologia , Regulação da Expressão Gênica , Glucocorticoides/metabolismo , MicroRNAs/metabolismo , Adipócitos/metabolismo , Adipogenia , Animais , Corticosterona/metabolismo , Retroalimentação Fisiológica , Feminino , Células HEK293 , Humanos , Inflamação , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/cirurgia , Sobrepeso/cirurgia , Fenótipo , RNA Interferente Pequeno/metabolismo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Transfecção
4.
Int J Mol Sci ; 15(11): 20266-89, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25383673

RESUMO

MicroRNAs (miRNAs) are endogenous small non-coding RNAs of ~23 nucleotides in length that form up a novel class of regulatory determinants, with a large set of target mRNAs postulated for every single miRNA. Thousands of miRNAs have been discovered so far, with hundreds of them shown to govern biological processes with impact on disease. However, very little is known about how they specifically interfere with biological pathways and disease mechanisms. To investigate this interaction, the hunt for direct miRNA targets that mediate the miRNA effects--the "needle in the haystack"--is an essential step. In this review we provide a comprehensive workflow of successfully applied methods starting from the identification of putative miRNA-target pairs, followed by validation of direct miRNA-mRNA interactions, and finally presenting methods that dissect the impact of particular miRNA-target pairs on a biological process or disease. This guide allows the way to be paved for obtaining biologically meaningful miRNA targets.


Assuntos
Biologia Computacional/métodos , MicroRNAs/metabolismo , Animais , Humanos , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA