Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(37): 41277-41287, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32814427

RESUMO

We describe the opportunity to deploy aerogels-an ultraporous nanoarchitecture with co-continuous networks of meso/macropores and covalently bonded nanoparticulates-as a platform to address the nature of the electronic, ionic, and mass transport that underlies catalytic activity. As a test case, we fabricated Au||TiO2 junctions in composite guest-host aerogels in which ∼5 nm Au nanoparticles are incorporated either directly into the anatase TiO2 network (Au "in" TiO2, AuIN-TiO2 aerogel) or deposited onto preformed TiO2 aerogel (Au "on" TiO2, AuON/TiO2 aerogel). The metal-meets-oxide nanoscale interphase as visualized by electron tomography feature extended three-dimensional (3D) interfaces, but AuIN-TiO2 aerogels impose a greater degree of Au contact with TiO2 particles than does the AuON/TiO2 form. Both aerogel variants enable transport of electrons over micrometer-scale distances across the TiO2 network to Au||TiO2 junctions, as evidenced by electron paramagnetic resonance (EPR) and ultrafast visible pump-IR probe time-resolved absorption spectroscopy. The siting of gold nanoparticles in the TiO2 network more effectively disperses trapped electrons. Density functional theory (DFT) calculations find that increased physical contact between Au and TiO2, induced by oxygen vacancies, produces increased hybridization of midgap states and quenches unpaired trapped electrons. We assign the apparent differences in electron-transport capabilities to a combination of the relatively better-wired Au||TiO2 junctions in AuIN-TiO2 aerogels, which have a greater capacity to dilute accumulated charge over a larger interfacial surface area, with an enhanced ability to discharge the accumulated electrons via catalytic reduction of adsorbed O2 to O2- at the interface. Solid-state 1H nuclear magnetic resonance experiments show that proton spin-lattice relaxation times and possibly proton diffusion are strongly coupled to Au||TiO2 interfacial design, likely through spin coupling of protons to unpaired electrons trapped at the TiO2 network. Taken together, our results show that Au||TiO2 interfacial design strongly impacts charge carrier (electron and proton) transport over mesoscale distances in catalytic aerogel architectures.

2.
ACS Appl Mater Interfaces ; 12(14): 16639-16647, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32223206

RESUMO

Niobium oxide (NbOx) materials of various compositions are of interest for neuromorphic systems that rely on memristive device behavior. In this study, we vary the composition of NbOx thin films deposited via atomic layer deposition (ALD) by incorporating one or more in situ hydrogen plasma exposure steps during the ALD supercycle. Films with compositions ranging from Nb2O5 to NbO2 were deposited, with film composition dependent on the duration of the plasma exposure step, the number of plasma exposure steps per ALD supercycle, and the hydrogen content of the plasma. The chemical and optical properties of the ALD NbOx films were probed using spectral ellipsometry, X-ray photoelectron spectroscopy, and optical transmission spectroscopy. Two-terminal electrical devices fabricated from ALD Nb2O5 and NbO2 thin films exhibited memristive switching behavior, with switching in the NbO2 devices achieved without a high-field electroforming step. The ability to controllably tune the composition of ALD-grown NbOx films opens new opportunities for realizing a variety of device structures relevant for neuromorphic computing and other emerging electronic and optoelectronic applications.

3.
Appl Environ Microbiol ; 86(5)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31836580

RESUMO

Melanin is a pigment produced by organisms throughout all domains of life. Due to its unique physicochemical properties, biocompatibility, and biostability, there has been an increasing interest in the use of melanin for broad applications. In the vast majority of studies, melanin has been either chemically synthesized or isolated from animals, which has restricted its use to small-scale applications. Using bacteria as biocatalysts is a promising and economical alternative for the large-scale production of biomaterials. In this study, we engineered the marine bacterium Vibrio natriegens, one of the fastest-growing organisms, to synthesize melanin by expressing a heterologous tyrosinase gene and demonstrated that melanin production was much faster than in previously reported heterologous systems. The melanin of V. natriegens was characterized as a polymer derived from dihydroxyindole-2-carboxylic acid (DHICA) and, similarly to synthetic melanin, exhibited several characteristic and useful features. Electron microscopy analysis demonstrated that melanin produced from V. natriegens formed nanoparticles that were assembled as "melanin ghost" structures, and the photoprotective properties of these particles were validated by their protection of cells from UV irradiation. Using a novel electrochemical reverse engineering method, we observed that melanization conferred redox activity to V. natriegens Moreover, melanized bacteria were able to quickly adsorb the organic compound trinitrotoluene (TNT). Overall, the genetic tractability, rapid division time, and ease of culture provide a set of attractive properties that compare favorably to current E. coli production strains and warrant the further development of this chassis as a microbial factory for natural product biosynthesis.IMPORTANCE Melanins are macromolecules that are ubiquitous in nature and impart a large variety of biological functions, including structure, coloration, radiation resistance, free radical scavenging, and thermoregulation. Currently, in the majority of investigations, melanins are either chemically synthesized or extracted from animals, which presents significant challenges for large-scale production. Bacteria have been used as biocatalysts to synthesize a variety of biomaterials due to their fast growth and amenability to genetic engineering using synthetic biology tools. In this study, we engineered the extremely fast-growing bacterium V. natriegens to synthesize melanin nanoparticles by expressing a heterologous tyrosinase gene with inducible promoters. Characterization of the melanin produced from V. natriegens-produced tyrosinase revealed that it exhibited physical and chemical properties similar to those of natural and chemically synthesized melanins, including nanoparticle structure, protection against UV damage, and adsorption of toxic compounds. We anticipate that producing and controlling melanin structures at the nanoscale in this bacterial system with synthetic biology tools will enable the design and rapid production of novel biomaterials for multiple applications.


Assuntos
Bacillus megaterium/genética , Biopolímeros/metabolismo , Melaninas/biossíntese , Microrganismos Geneticamente Modificados/metabolismo , Monofenol Mono-Oxigenase/genética , Vibrio/metabolismo , Biopolímeros/genética , Microrganismos Geneticamente Modificados/genética , Monofenol Mono-Oxigenase/metabolismo , Vibrio/genética
4.
Sci Rep ; 7(1): 5308, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28706227

RESUMO

The ability to tailor the performance of functional materials, such as semiconductors, via careful manipulation of defects has led to extraordinary advances in microelectronics. Functional metal oxides are no exception - protonic-defect-conducting oxides find use in solid oxide fuel cells (SOFCs) and oxygen-deficient high-temperature superconductors are poised for power transmission and magnetic imaging applications. Similarly, the advantageous functional responses in ferroelectric materials that make them attractive for use in microelectromechanical systems (MEMS), logic elements, and environmental energy harvesting, are derived from interactions of defects with other defects (such as domain walls) and with the lattice. Chemical doping has traditionally been employed to study the effects of defects in functional materials, but complications arising from compositional heterogeneity often make interpretation of results difficult. Alternatively, irradiation is a versatile means of evaluating defect interactions while avoiding the complexities of doping. Here, a generalized phenomenological model is developed to quantify defect interactions and compare material performance in functional oxides as a function of radiation dose. The model is demonstrated with historical data from literature on ferroelectrics, and expanded to functional materials for SOFCs, mixed ionic-electronic conductors (MIECs), He-ion implantation, and superconductors. Experimental data is used to study microstructural effects on defect interactions in ferroelectrics.

5.
J Am Chem Soc ; 139(2): 619-622, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28013538

RESUMO

K5Sb4 and K3Sb7 Zintl ion precursors react with Pd(PPh3)4 in ethylenediamine/toluene/PBu4+ solutions to give crystals of Sb@Pd12@Sb20n-/PBu4+ salts, where n = 3, 4. The clusters are structurally identical in the two charge states, with nearly perfect Ih point symmetry, and can be viewed as an Sb@Pd12 icosahedron centered inside of an Sb20 dodecahedron. The metric parameters suggest very weak Sb-Sb and Pd-Pd interactions with strong radial Sb-Pd bonds between the Sb20 and Pd12 shells. All-electron DFT analysis shows the 3- ion to be diamagnetic with Ih symmetry and a 1.33 eV HOMO-LUMO gap, whereas the 4- ion undergoes a Jahn-Teller distortion to an S = 1/2 D3d structure with a small 0.1 eV gap. The distortion is predicted to be small and is not discernible by crystallography. Laser desorption-ionization time-of-flight mass spectrometry (LDI-TOF MS) studies of the crystalline samples show intense parent Sb@Pd12@Sb20- ions (negative ion mode) and Sb@Pd12@Sb20+ (positive ion mode) along with series of Sb@Pd12-y@Sb20-x-/+ ions. Ni(cyclooctadiene)2 reacts with K3Sb7 in en/tol/Bu4PBr solvent mixtures to give black precipitates of Sb@Ni12@Sb20n- salts that give similar Sb@Ni12@Sb20-/+ parent ions and Sb@Ni12-y@Sb20-x-/+ degradation series in the respective LDI-TOF MS studies. The solid-state and gas-phase studies of the icosahedral Sb@M12@Sb20n-/n+ ions show that the clusters can exist in the -4, -3, -1, +1 (M = Pd) and +1, -1 (M = Ni) oxidation states. These multiple-charge-state clusters are reminiscent of redox-active fullerenes (e.g., C60n, where n = +1, 0, -1, -2, -3, -4, -5, -6).

6.
J Vis Exp ; (99): e52843, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26067027

RESUMO

Aerosol deposition (AD) is a thick-film deposition process that can produce layers up to several hundred micrometers thick with densities greater than 95% of the bulk. The primary advantage of AD is that the deposition takes place entirely at ambient temperature; thereby enabling film growth in material systems with disparate melting temperatures. This report describes in detail the processing steps for preparing the powder and for performing AD using the custom-built system. Representative characterization results are presented from scanning electron microscopy, profilometry, and ferromagnetic resonance for films grown in this system. As a representative overview of the capabilities of the system, focus is given to a sample produced following the described protocol and system setup. Results indicate that this system can successfully deposit 11 µm thick yttrium iron garnet films that are  > 90% of the bulk density during a single 5 min deposition run. A discussion of methods to afford better control of the aerosol and particle selection for improved thickness and roughness variations in the film is provided.


Assuntos
Compostos de Ferro/química , Ítrio/química , Aerossóis/química , Microscopia Eletrônica de Varredura , Temperatura
7.
Front Microbiol ; 4: 379, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376440

RESUMO

Melanization due to the inactivation of the homogentisate-1,2-dioxygenase gene (hmgA) has been demonstrated to increase stress resistance, persistence, and virulence in some bacterial species but such pigmented mutants have not been observed in pathogenic members of the Vibrio Harveyi clade. In this study, we used Vibrio campbellii ATCC BAA-1116 as model organism to understand how melanization affected cellular phenotype, metabolism, and virulence. An in-frame deletion of the hmgA gene resulted in the overproduction of a pigment in cell culture supernatants and cellular membranes that was identified as pyomelanin. Unlike previous demonstrations in Vibrio cholerae, Burkholderia cepacia, and Pseudomonas aeruginosa, the pigmented V. campbellii mutant did not show increased UV resistance and was found to be ~2.7 times less virulent than the wild type strain in Penaeus monodon shrimp virulence assays. However, the extracted pyomelanin pigment did confer a higher resistance to oxidative stress when incubated with wild type cells. Microarray-based transcriptomic analyses revealed that the hmgA gene deletion and subsequent pyomelanin production negatively effected the expression of 129 genes primarily involved in energy production, amino acid, and lipid metabolism, and protein translation and turnover. This transcriptional response was mediated in part by an impairment of the quorum sensing regulon as transcripts of the quorum sensing high cell density master regulator LuxR and other operonic members of this regulon were significantly less abundant in the hmgA mutant. Taken together, the results suggest that the pyomelanization of V. campbellii sufficiently impairs the metabolic activities of this organism and renders it less fit and virulent than its isogenic wild type strain.

8.
Sci Rep ; 3: 3143, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24189548

RESUMO

The remarkable electronic properties of graphene strongly depend on the thickness and geometry of graphene stacks. This wide range of electronic tunability is of fundamental interest and has many applications in newly proposed devices. Using the mid-infrared, magneto-optical Kerr effect, we detect and identify over 18 interband cyclotron resonances (CR) that are associated with ABA and ABC stacked multilayers as well as monolayers that coexist in graphene that is epitaxially grown on 4H-SiC. Moreover, the magnetic field and photon energy dependence of these features enable us to explore the band structure, electron-hole band asymmetries, and mechanisms that activate a CR response in the Kerr effect for various multilayers that coexist in a single sample. Surprisingly, we find that the magnitude of monolayer Kerr effect CRs is not temperature dependent. This unexpected result reveals new questions about the underlying physics that makes such an effect possible.

9.
Nano Lett ; 9(7): 2605-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19583281

RESUMO

We present X-ray photoelectron spectroscopy, van der Pauw Hall mobilities, low-temperature far-infrared magneto transmission (FIR-MT), and atomic force microscopy (AFM) results from graphene films produced by radiative heating in an ultrahigh vacuum (UHV) chamber or produced by radio frequency (RF) furnace annealing in a high vacuum chemical vapor deposition system on Si- and C-face 4H SiC substrates at 1200-1600 degrees C. Although the vacuum level and heating methods are different, graphene films produced by the two methods are chemically similar with the RF furnace annealing typically producing thicker graphene films than UHV. We observe, however, that the formation of graphene on the two faces is different with the thicker graphene films on the C-face RF samples having higher mobility. The FIR-MT showed a 0(-1) --> 1(0) Landau level transition with a square root B dependence and a line width consistent with a Dirac fermion with a mobility >250,000 cm(2) x V(-1) x s(-1) at 4.2 K in a C-face RF sample having a Hall-effect carrier mobility of 425 cm(2) x V(-1) x s(-1) at 300 K. AFM shows that graphene grows continuously over the varying morphology of both Si and C-face substrates.


Assuntos
Carbono/química , Grafite/química , Ondas de Rádio , Silício/química , Grafite/síntese química , Grafite/classificação , Temperatura Alta , Microscopia de Força Atômica/métodos , Análise Espectral/métodos , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA