Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37808649

RESUMO

Maintenance of immune homeostasis to the intestinal mictrobiota is dependent on a population of effector regulatory T (eTreg) cells that develop from microbiota-reactive induced (i)Treg cells. A cardinal feature of eTreg cells is their production of IL-10, which plays a non-redundant role in immune tolerance of commensal microbes. Here, we identify an unexpected role for IL-2-induced Stat3 signaling to program iTreg cells for eTreg cell differentiation and Il10 transcriptional competency. IL-2 proved to be both necessary and sufficient for eTreg cell development - contingent on Stat3 output of the IL-2 receptor coordinate with IL-2 signaling during early Treg cell commitment. Induction of iTreg cell programming in absence of IL-2-induced Stat3 signaling resulted in impaired eTreg cell differentiation and a failure to produce IL-10. An IL-2 mutein with reduced affinity for the IL-2Rγ (γ c ) chain was found to have blunted IL-2R Stat3 output, resulting in a deficiency of Il10 transcriptional programming that could not be fully rescued by Stat3 signaling subsequent to an initial window of iTreg cell differentiation. These findings expose a heretofore unappreciated role of IL-2 signaling that acts early to program subsequent production of IL-10 by developing eTreg cells, with broad implications for IL-2-based therapeutic interventions in immune-mediated diseases.

2.
Science ; 381(6656): eadh1720, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37499032

RESUMO

Fine-tuning of protein-protein interactions occurs naturally through coevolution, but this process is difficult to recapitulate in the laboratory. We describe a platform for synthetic protein-protein coevolution that can isolate matched pairs of interacting muteins from complex libraries. This large dataset of coevolved complexes drove a systems-level analysis of molecular recognition between Z domain-affibody pairs spanning a wide range of structures, affinities, cross-reactivities, and orthogonalities, and captured a broad spectrum of coevolutionary networks. Furthermore, we harnessed pretrained protein language models to expand, in silico, the amino acid diversity of our coevolution screen, predicting remodeled interfaces beyond the reach of the experimental library. The integration of these approaches provides a means of simulating protein coevolution and generating protein complexes with diverse molecular recognition properties for biotechnology and synthetic biology.


Assuntos
Evolução Molecular Direcionada , Domínios e Motivos de Interação entre Proteínas , Proteínas , Aminoácidos/química , Aprendizado de Máquina , Proteínas/química , Evolução Molecular Direcionada/métodos , Conjuntos de Dados como Assunto , Proteína Estafilocócica A/química
3.
Cell Rep ; 42(3): 112201, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36867534

RESUMO

Janus kinases (JAKs) mediate signal transduction downstream of cytokine receptors. Cytokine-dependent dimerization is conveyed across the cell membrane to drive JAK dimerization, trans-phosphorylation, and activation. Activated JAKs in turn phosphorylate receptor intracellular domains (ICDs), resulting in the recruitment, phosphorylation, and activation of signal transducer and activator of transcription (STAT)-family transcription factors. The structural arrangement of a JAK1 dimer complex with IFNλR1 ICD was recently elucidated while bound by stabilizing nanobodies. While this revealed insights into the dimerization-dependent activation of JAKs and the role of oncogenic mutations in this process, the tyrosine kinase (TK) domains were separated by a distance not compatible with the trans-phosphorylation events between the TK domains. Here, we report the cryoelectron microscopy structure of a mouse JAK1 complex in a putative trans-activation state and expand these insights to other physiologically relevant JAK complexes, providing mechanistic insight into the crucial trans-activation step of JAK signaling and allosteric mechanisms of JAK inhibition.


Assuntos
Proteínas de Ligação a DNA , Janus Quinases , Animais , Camundongos , Janus Quinases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Microscopia Crioeletrônica , Transativadores/metabolismo , Janus Quinase 1/metabolismo , Transdução de Sinais , Fosforilação , Janus Quinase 2/metabolismo , Janus Quinase 3/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(11): e2218238120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893265

RESUMO

Wnt morphogens are critical for embryonic development and tissue regeneration. Canonical Wnts form ternary receptor complexes composed of tissue-specific Frizzled (Fzd) receptors together with the shared LRP5/6 coreceptors to initiate ß-catenin signaling. The cryo-EM structure of a ternary initiation complex of an affinity-matured XWnt8-Frizzled8-LRP6 complex elucidates the basis of coreceptor discrimination by canonical Wnts by means of their N termini and linker domains that engage the LRP6 E1E2 domain funnels. Chimeric Wnts bearing modular linker "grafts" were able to transfer LRP6 domain specificity between different Wnts and enable non-canonical Wnt5a to signal through the canonical pathway. Synthetic peptides comprising the linker domain serve as Wnt-specific antagonists. The structure of the ternary complex provides a topological blueprint for the orientation and proximity of Frizzled and LRP6 within the Wnt cell surface signalosome.


Assuntos
Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteínas Wnt , Proteínas Wnt/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Transdução de Sinais , Receptores Frizzled/metabolismo , Membrana Celular/metabolismo , beta Catenina/metabolismo , Via de Sinalização Wnt
5.
Nat Rev Drug Discov ; 22(1): 21-37, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36131080

RESUMO

Cytokines are secreted signalling proteins that play essential roles in the initiation, maintenance and resolution of immune responses. Although the unique ability of cytokines to control immune function has garnered clinical interest in the context of cancer, autoimmunity and infectious disease, the use of cytokine-based therapeutics has been limited. This is due, in part, to the ability of cytokines to act on many cell types and impact diverse biological functions, resulting in dose-limiting toxicity or lack of efficacy. Recent studies combining structural biology, protein engineering and receptor pharmacology have unlocked new insights into the mechanisms of cytokine receptor activation, demonstrating that many aspects of cytokine function are highly tunable. Here, we discuss the pharmacological principles underlying these efforts to overcome cytokine pleiotropy and enhance the therapeutic potential of this important class of signalling molecules.


Assuntos
Citocinas , Neoplasias , Humanos , Citocinas/metabolismo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Transdução de Sinais/fisiologia , Engenharia de Proteínas , Neoplasias/tratamento farmacológico
6.
Elife ; 112022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35579417

RESUMO

Interleukin 27 (IL-27) is a heterodimeric cytokine that functions to constrain T cell-mediated inflammation and plays an important role in immune homeostasis. Binding of IL-27 to cell surface receptors, IL-27Rα and gp130, results in activation of receptor-associated Janus Kinases and nuclear translocation of Signal Transducer and Activator of Transcription 1 (STAT1) and STAT3 transcription factors. Despite the emerging therapeutic importance of this cytokine axis in cancer and autoimmunity, a molecular blueprint of the IL-27 receptor signaling complex, and its relation to other gp130/IL-12 family cytokines, is currently unclear. We used cryogenic-electron microscopy to determine the quaternary structure of IL-27, composed of p28 and Epstein-Barr Virus-Induced 3 (Ebi3) subunits, bound to receptors, IL-27Rα and gp130. The resulting 3.47 Å resolution structure revealed a three-site assembly mechanism nucleated by the central p28 subunit of the cytokine. The overall topology and molecular details of this binding are reminiscent of IL-6 but distinct from related heterodimeric cytokines IL-12 and IL-23. These results indicate distinct receptor assembly mechanisms used by heterodimeric cytokines with important consequences for targeted agonism and antagonism of IL-27 signaling.


Assuntos
Receptor gp130 de Citocina , Interleucina-27 , Receptores de Interleucina , Receptor gp130 de Citocina/química , Humanos , Interleucina-12 , Interleucina-27/química , Estrutura Quaternária de Proteína , Receptores de Interleucina/química
7.
Cell ; 185(8): 1414-1430.e19, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35325595

RESUMO

Cytokines are powerful immune modulators that initiate signaling through receptor dimerization, but natural cytokines have structural limitations as therapeutics. We present a strategy to discover cytokine surrogate agonists by using modular ligands that exploit induced proximity and receptor dimer geometry as pharmacological metrics amenable to high-throughput screening. Using VHH and scFv to human interleukin-2/15, type-I interferon, and interleukin-10 receptors, we generated combinatorial matrices of single-chain bispecific ligands that exhibited diverse spectrums of functional activities, including potent inhibition of SARS-CoV-2 by surrogate interferons. Crystal structures of IL-2R:VHH complexes revealed that variation in receptor dimer geometries resulted in functionally diverse signaling outputs. This modular platform enabled engineering of surrogate ligands that compelled assembly of an IL-2R/IL-10R heterodimer, which does not naturally exist, that signaled through pSTAT5 on T and natural killer (NK) cells. This "cytokine med-chem" approach, rooted in principles of induced proximity, is generalizable for discovery of diversified agonists for many ligand-receptor systems.


Assuntos
COVID-19 , Citocinas , Humanos , Interleucina-2/farmacologia , Células Matadoras Naturais , Ligantes , Receptores de Interleucina-10 , SARS-CoV-2
8.
Science ; 376(6589): 163-169, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35271300

RESUMO

Cytokines signal through cell surface receptor dimers to initiate activation of intracellular Janus kinases (JAKs). We report the 3.6-angstrom-resolution cryo-electron microscopy structure of full-length JAK1 complexed with a cytokine receptor intracellular domain Box1 and Box2 regions captured as an activated homodimer bearing the valine→phenylalanine (VF) mutation prevalent in myeloproliferative neoplasms. The seven domains of JAK1 form an extended structural unit, the dimerization of which is mediated by close-packing of the pseudokinase (PK) domains from the monomeric subunits. The oncogenic VF mutation lies within the core of the JAK1 PK interdimer interface, enhancing packing complementarity to facilitate ligand-independent activation. The carboxy-terminal tyrosine kinase domains are poised for transactivation and to phosphorylate the receptor STAT (signal transducer and activator of transcription)-recruiting motifs projecting from the overhanging FERM (four-point-one, ezrin, radixin, moesin)-SH2 (Src homology 2)-domains. Mapping of constitutively active JAK mutants supports a two-step allosteric activation mechanism and reveals opportunities for selective therapeutic targeting of oncogenic JAK signaling.


Assuntos
Janus Quinase 1 , Receptores de Citocinas , Domínios de Homologia de src , Regulação Alostérica , Microscopia Crioeletrônica , Ativação Enzimática , Humanos , Janus Quinase 1/química , Janus Quinase 1/metabolismo , Mutação , Transtornos Mieloproliferativos/enzimologia , Transtornos Mieloproliferativos/genética , Fosforilação , Multimerização Proteica , Receptores de Citocinas/química , Fatores de Transcrição STAT/metabolismo
9.
Nature ; 597(7877): 544-548, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34526724

RESUMO

Adoptive transfer of antigen-specific T cells represents a major advance in cancer immunotherapy, with robust clinical outcomes in some patients1. Both the number of transferred T cells and their differentiation state are critical determinants of effective responses2,3. T cells can be expanded with T cell receptor (TCR)-mediated stimulation and interleukin-2, but this can lead to differentiation into effector T cells4,5 and lower therapeutic efficacy6, whereas maintenance of a more stem-cell-like state before adoptive transfer is beneficial7. Here we show that H9T, an engineered interleukin-2 partial agonist, promotes the expansion of CD8+ T cells without driving terminal differentiation. H9T led to altered STAT5 signalling and mediated distinctive downstream transcriptional, epigenetic and metabolic programs. In addition, H9T treatment sustained the expression of T cell transcription factor 1 (TCF-1) and promoted mitochondrial fitness, thereby facilitating the maintenance of a stem-cell-like state. Moreover, TCR-transgenic and chimeric antigen receptor-modified CD8+ T cells that were expanded with H9T showed robust anti-tumour activity in vivo in mouse models of melanoma and acute lymphoblastic leukaemia. Thus, engineering cytokine variants with distinctive properties is a promising strategy for creating new molecules with translational potential.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Agonismo Parcial de Drogas , Interleucina-2/análogos & derivados , Interleucina-2/agonistas , Proteínas Mutantes/farmacologia , Células-Tronco/efeitos dos fármacos , Animais , Linfócitos T CD8-Positivos/imunologia , Interleucina-2/química , Interleucina-2/genética , Melanoma/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Fator de Transcrição STAT5/metabolismo , Células-Tronco/citologia , Fator 1 de Transcrição de Linfócitos T/metabolismo , Pesquisa Translacional Biomédica
10.
Science ; 373(6557): 871-876, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34282049

RESUMO

DeepMind presented notably accurate predictions at the recent 14th Critical Assessment of Structure Prediction (CASP14) conference. We explored network architectures that incorporate related ideas and obtained the best performance with a three-track network in which information at the one-dimensional (1D) sequence level, the 2D distance map level, and the 3D coordinate level is successively transformed and integrated. The three-track network produces structure predictions with accuracies approaching those of DeepMind in CASP14, enables the rapid solution of challenging x-ray crystallography and cryo-electron microscopy structure modeling problems, and provides insights into the functions of proteins of currently unknown structure. The network also enables rapid generation of accurate protein-protein complex models from sequence information alone, short-circuiting traditional approaches that require modeling of individual subunits followed by docking. We make the method available to the scientific community to speed biological research.


Assuntos
Aprendizado Profundo , Conformação Proteica , Dobramento de Proteína , Proteínas/química , Proteínas ADAM/química , Sequência de Aminoácidos , Simulação por Computador , Microscopia Crioeletrônica , Cristalografia por Raios X , Bases de Dados de Proteínas , Proteínas de Membrana/química , Modelos Moleculares , Complexos Multiproteicos/química , Redes Neurais de Computação , Subunidades Proteicas/química , Proteínas/fisiologia , Receptores Acoplados a Proteínas G/química , Esfingosina N-Aciltransferase/química
11.
Elife ; 102021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34003116

RESUMO

Interleukin-2 is a pleiotropic cytokine that mediates both pro- and anti-inflammatory functions. Immune cells naturally differ in their sensitivity to IL-2 due to cell type and activation state-dependent expression of receptors and signaling pathway components. To probe differences in IL-2 signaling across cell types, we used structure-based design to create and profile a series of IL-2 variants with the capacity to titrate maximum signal strength in fine increments. One of these partial agonists, IL-2-REH, specifically expanded Foxp3+ regulatory T cells with reduced activity on CD8+ T cells due to cell type-intrinsic differences in IL-2 signaling. IL-2-REH elicited cell type-dependent differences in gene expression and provided mixed therapeutic results: showing benefit in the in vivo mouse dextran sulfate sodium (DSS) model of colitis, but no therapeutic efficacy in a transfer colitis model. Our findings show that cytokine partial agonists can be used to calibrate intrinsic differences in response thresholds across responding cell types to narrow pleiotropic actions, which may be generalizable to other cytokine and growth factor systems.


Assuntos
Interleucina-2/agonistas , Interleucina-2/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular , Colite/induzido quimicamente , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL
12.
Cell ; 184(4): 983-999.e24, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33606986

RESUMO

Interleukin-12 (IL-12) and IL-23 are heterodimeric cytokines that are produced by antigen-presenting cells to regulate the activation and differentiation of lymphocytes, and they share IL-12Rß1 as a receptor signaling subunit. We present a crystal structure of the quaternary IL-23 (IL-23p19/p40)/IL-23R/IL-12Rß1 complex, together with cryoelectron microscopy (cryo-EM) maps of the complete IL-12 (IL-12p35/p40)/IL-12Rß2/IL-12Rß1 and IL-23 receptor (IL-23R) complexes, which reveal "non-canonical" topologies where IL-12Rß1 directly engages the common p40 subunit. We targeted the shared IL-12Rß1/p40 interface to design a panel of IL-12 partial agonists that preserved interferon gamma (IFNγ) induction by CD8+ T cells but impaired cytokine production from natural killer (NK) cells in vitro. These cell-biased properties were recapitulated in vivo, where IL-12 partial agonists elicited anti-tumor immunity to MC-38 murine adenocarcinoma absent the NK-cell-mediated toxicity seen with wild-type IL-12. Thus, the structural mechanism of receptor sharing used by IL-12 family cytokines provides a protein interface blueprint for tuning this cytokine axis for therapeutics.


Assuntos
Interleucina-12/química , Interleucina-12/metabolismo , Células Matadoras Naturais/metabolismo , Receptores de Interleucina/química , Receptores de Interleucina/metabolismo , Linfócitos T/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Microscopia Crioeletrônica , Cristalografia por Raios X , Epitopos/imunologia , Feminino , Células HEK293 , Humanos , Imunidade , Interleucina-12/agonistas , Subunidade p40 da Interleucina-12/química , Subunidade p40 da Interleucina-12/metabolismo , Camundongos Endogâmicos C57BL , Modelos Moleculares , Neoplasias/imunologia , Neoplasias/patologia , Estrutura Quaternária de Proteína , Receptores de Interleucina/ultraestrutura , Receptores de Interleucina-12/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
13.
Elife ; 92020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32773038

RESUMO

T regulatory (Treg) cells play vital roles in modulating immunity and tissue homeostasis. Their actions depend on TCR recognition of peptide-MHC molecules; yet the degree of peptide specificity of Treg-cell function, and whether Treg ligands can be used to manipulate Treg cell biology are unknown. Here, we developed an Ab-peptide library that enabled unbiased screening of peptides recognized by a bona fide murine Treg cell clone isolated from the visceral adipose tissue (VAT), and identified surrogate agonist peptides, with differing affinities and signaling potencies. The VAT-Treg cells expanded in vivo by one of the surrogate agonists preserved the typical VAT-Treg transcriptional programs. Immunization with this surrogate, especially when coupled with blockade of TNFα signaling, expanded VAT-Treg cells, resulting in protection from inflammation and improved metabolic indices, including promotion of insulin sensitivity. These studies suggest that antigen-specific targeting of VAT-localized Treg cells could eventually be a strategy for improving metabolic disease.


Assuntos
Inflamação/metabolismo , Resistência à Insulina/fisiologia , Gordura Intra-Abdominal/metabolismo , Linfócitos T Reguladores/fisiologia , Animais , Células HEK293 , Humanos , Células Jurkat , Células K562 , Masculino , Camundongos , Camundongos Transgênicos , Biblioteca de Peptídeos
14.
Proc Natl Acad Sci U S A ; 117(13): 7183-7192, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32184322

RESUMO

Interleukin-2 (IL-2) is a small α-helical cytokine that regulates immune cell homeostasis through its recruitment to a high-affinity heterotrimeric receptor complex (IL-2Rα/IL-2Rß/γc). IL-2 has been shown to have therapeutic efficacy for immune diseases by preferentially expanding distinct T cell compartments, and several regulatory T cell (Treg)-biasing anti-IL-2 antibodies have been developed for combination therapies. The conformational plasticity of IL-2 plays an important role in its biological actions by modulating the strength of receptor and drug interactions. Through an NMR analysis of milliseconds-timescale dynamics of free mouse IL-2 (mIL-2), we identify a global transition to a sparse conformation which is regulated by an α-helical capping "switch" at the loop between the A and B helices (AB loop). Binding to either an anti-mouse IL-2 monoclonal antibody (mAb) or a small molecule inhibitor near the loop induces a measurable response at the core of the structure, while locking the switch to a single conformation through a designed point mutation leads to a global quenching of core dynamics accompanied by a pronounced effect in mAb binding. By elucidating key details of the long-range allosteric communication between the receptor binding surfaces and the core of the IL-2 structure, our results offer a direct blueprint for designing precision therapeutics targeting a continuum of conformational states.


Assuntos
Interleucina-2/metabolismo , Animais , Linhagem Celular , Interleucina-2/genética , Espectroscopia de Ressonância Magnética , Camundongos , Conformação Proteica
15.
Proc Natl Acad Sci U S A ; 115(31): E7369-E7378, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30021852

RESUMO

T cell receptors (TCRs) bind to peptide-major histocompatibility complex (pMHC) with low affinity (Kd ∼ µM), which is generally assumed to facilitate cross-reactive TCR "scanning" of ligands. To understand the relationship between TCR/pMHC affinity and cross-reactivity, we sought to engineer an additional weak interaction, termed "velcro," between the TCR and pMHC to probe the specificities of TCRs at relatively low and high affinities. This additional interaction was generated through an eight-amino acid peptide library covalently linked to the N terminus of the MHC-bound peptide. Velcro was selected through an affinity-based isolation and was subsequently shown to enhance the cognate TCR/pMHC affinity in a peptide-dependent manner by ∼10-fold. This was sufficient to convert a nonstimulatory ultra-low-affinity ligand into a stimulatory ligand. An X-ray crystallographic structure revealed how velcro interacts with the TCR. To probe TCR cross-reactivity, we screened TCRs against yeast-displayed pMHC libraries with and without velcro, and found that the peptide cross-reactivity profiles of low-affinity (Kd > 100 µM) and high-affinity (Kd ∼ µM) TCR/pMHC interactions are remarkably similar. The conservation of recognition of the TCR for pMHC across affinities reveals the nature of low-affinity ligands for which there are important biological functions and has implications for understanding the specificities of affinity-matured TCRs.


Assuntos
Complexo Principal de Histocompatibilidade , Oligopeptídeos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Reações Cruzadas , Humanos , Biblioteca de Peptídeos , Engenharia de Proteínas
16.
Cell Rep ; 22(5): 1263-1275, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29386113

RESUMO

CD4+ T cells convert the time that T cell receptors (TCRs) interact with peptides embedded within class II major histocompatibility complex molecules (pMHCII) into signals that direct cell-fate decisions. In principle, TCRs relay information to intracellular signaling motifs of the associated CD3 subunits, while CD4 recruits the kinase Lck to those motifs upon coincident detection of pMHCII. But the mechanics by which this occurs remain enigmatic. In one model, the TCR and CD4 bind pMHCII independently, while in another, CD4 interacts with a composite surface formed by the TCR-CD3 complex bound to pMHCII. Here, we report that the duration of TCR-pMHCII interactions impact CD4 binding to MHCII. In turn, CD4 increases TCR confinement to pMHCII via reciprocal interactions involving membrane distal and proximal CD4 ectodomains. The data suggest that a precisely assembled macrocomplex functions to reliably convert TCR-pMHCII confinement into reproducible signals that orchestrate adaptive immunity.


Assuntos
Antígenos CD4/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Ativação Linfocitária/imunologia , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Imunidade Adaptativa/imunologia , Animais , Antígenos CD4/química , Antígenos CD4/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe II/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Domínios Proteicos , Complexo Receptor-CD3 de Antígeno de Linfócitos T/química , Complexo Receptor-CD3 de Antígeno de Linfócitos T/imunologia , Transdução de Sinais/imunologia
17.
J Immunol ; 196(11): 4713-22, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27183595

RESUMO

TCRs relay information about peptides embedded within MHC molecules (pMHC) to the ITAMs of the associated CD3γε, CD3δε, and CD3ζζ signaling modules. CD4 then recruits the Src kinase p56(Lck) (Lck) to the TCR-CD3 complex to phosphorylate the ITAMs, initiate intracellular signaling, and drive CD4(+) T cell fate decisions. Whereas the six ITAMs of CD3ζζ are key determinants of T cell development, activation, and the execution of effector functions, multiple models predict that CD4 recruits Lck proximal to the four ITAMs of the CD3 heterodimers. We tested these models by placing FRET probes at the cytosolic juxtamembrane regions of CD4 and the CD3 subunits to evaluate their relationship upon pMHC engagement in mouse cell lines. The data are consistent with a compact assembly in which CD4 is proximal to CD3δε, CD3ζζ resides behind the TCR, and CD3γε is offset from CD3δε. These results advance our understanding of the architecture of the TCR-CD3-pMHC-CD4 macrocomplex and point to regions of high CD4-Lck + ITAM concentrations therein. The findings thus have implications for TCR signaling, as phosphorylation of the CD3 ITAMs by CD4-associated Lck is important for CD4(+) T cell fate decisions.


Assuntos
Antígenos CD4/imunologia , Membrana Celular/imunologia , Citosol/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Complexo Receptor-CD3 de Antígeno de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Humanos , Camundongos
19.
Immunity ; 43(2): 227-39, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26231119

RESUMO

The eight-subunit T cell receptor (TCR)-CD3 complex is the primary determinant for T cell fate decisions. Yet how it relays ligand-specific information across the cell membrane for conversion to chemical signals remains unresolved. We hypothesized that TCR engagement triggers a change in the spatial relationship between the associated CD3ζζ subunits at the junction where they emerge from the membrane into the cytoplasm. Using three in situ proximity assays based on ID-PRIME, FRET, and EPOR activity, we determined that the cytosolic juxtamembrane regions of the CD3ζζ subunits are spread apart upon assembly into the TCR-CD3 complex. TCR engagement then triggered their apposition. This mechanical switch resides upstream of the CD3ζζ intracellular motifs that initiate chemical signaling, as well as the polybasic stretches that regulate signal potentiation. These findings provide a framework from which to examine triggering events for activating immune receptors and other complex molecular machines.


Assuntos
Complexo CD3/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Complexos Multiproteicos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Animais , Complexo CD3/genética , Humanos , Hibridomas , Mecanotransdução Celular , Camundongos , Complexos Multiproteicos/genética , Conformação Proteica , Engenharia de Proteínas , Multimerização Proteica/genética , Multimerização Proteica/imunologia , Estrutura Terciária de Proteína/genética , Receptor Cross-Talk , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais/genética
20.
PLoS One ; 10(7): e0132333, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147390

RESUMO

CD4 interactions with class II major histocompatibility complex (MHC) molecules are essential for CD4+ T cell development, activation, and effector functions. While its association with p56lck (Lck), a Src kinase, is important for these functions CD4 also has an Lck-independent role in TCR signaling that is incompletely understood. Here, we identify a conserved GGxxG motif in the CD4 transmembrane domain that is related to the previously described GxxxG motifs of other proteins and predicted to form a flat glycine patch in a transmembrane helix. In other proteins, these patches have been reported to mediate dimerization of transmembrane domains. Here we show that introducing bulky side-chains into this patch (GGxxG to GVxxL) impairs the Lck-independent role of CD4 in T cell activation upon TCR engagement of agonist and weak agonist stimulation. However, using Forster's Resonance Energy Transfer (FRET), we saw no evidence that these mutations decreased CD4 dimerization either in the unliganded state or upon engagement of pMHC concomitantly with the TCR. This suggests that the CD4 transmembrane domain is either mediating interactions with an unidentified partner, or mediating some other function such as membrane domain localization that is important for its role in T cell activation.


Assuntos
Ativação Linfocitária/fisiologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Multimerização Proteica/fisiologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Motivos de Aminoácidos , Animais , Antígenos CD4 , Células CHO , Cricetinae , Cricetulus , Transferência Ressonante de Energia de Fluorescência , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Estrutura Terciária de Proteína , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA