Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Scand J Med Sci Sports ; 34(1): e14442, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37770233

RESUMO

Sufficient delivery of oxygen and metabolic substrates, together with removal of waste products, are key elements of muscle performance. Capillaries are the primary site for this exchange in skeletal muscle and the degree of muscle capillarization affects diffusion conditions by influencing mean transit time, capillary surface area and diffusion distance. Muscle capillarization may thus represent a limiting factor for performance. Exercise training increases the number of capillaries per muscle fiber by about 10%-20% within a few weeks in untrained subjects, whereas capillary growth progresses more slowly in well-trained endurance athletes. Studies show that capillaries are tortuous, situated along and across the length of the fibers with an arrangement related to muscle fascicles. Although direct data is lacking, it is possible that years of training not only enhances capillary density but also optimizes the positioning of capillaries, to further improve the diffusion conditions. Muscle capillarization has been shown to increase oxygen extraction during exercise in humans, but direct evidence for a causal link between increased muscle capillarization and performance is scarce. This review covers current knowledge on the implications of muscle capillarization for oxygen and glucose uptake as well as performance. A brief overview of the process of capillary growth and of physical factors, inherent to exercise, which promote angiogenesis, provides the foundation for a discussion on how different training modalities may influence muscle capillary growth. Finally, we identify three areas for future research on the role of capillarization for exercise performance.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Exercício Físico/fisiologia , Capilares , Oxigênio/metabolismo
2.
Scand J Med Sci Sports ; 33(12): 2457-2469, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37668421

RESUMO

Despite the frequent occurrence of congested game fixtures in elite ice hockey, the postgame recovery pattern has not previously been investigated. The purpose of the present study was therefore to evaluate the acute decrements and subsequent recovery of skeletal muscle glycogen levels, muscle function and repeated-sprint ability following ice hockey game-play. Sixteen male players from the Danish U20 national team completed a training game with muscle biopsies obtained before, postgame and following ~38 h of recovery (day 2). On-ice repeated-sprint ability and muscle function (maximal voluntary isometric [MVIC] and electrically induced low- (20 Hz) and high-frequency (50 Hz) knee-extensor contractions) were assessed at the same time points, as well as ~20 h into recovery (day 1). Muscle glycogen decreased 31% (p < 0.001) postgame and had returned to pregame levels on day 2. MVIC dropped 11%, whereas 50 and 20 Hz torque dropped 21% and 29% postgame, respectively, inducing a 10% reduction in the 20/50 Hz torque ratio indicative of low-frequency force depression (all p < 0.001). While MVIC torque returned to baseline on day 1, 20 and 50 Hz torque remained depressed by 9%-11% (p = 0.010-0.040), hence restoring the pre-exercise 20/50 Hz ratio. Repeated-sprint ability was only marginally reduced by 1% postgame (p = 0.041) and fully recovered on day 1. In conclusion, an elite youth ice hockey game induces substantial reductions in muscle glycogen content and muscle function, but only minor reductions in repeated-sprint ability and with complete recovery of all parameters within 1-2 days postgame.


Assuntos
Hóquei , Adolescente , Humanos , Masculino , Hóquei/fisiologia , Resistência Física/fisiologia , Músculo Esquelético
3.
Acta Physiol (Oxf) ; 239(1): e14020, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37485756

RESUMO

AIM: Histidine-containing dipeptides (HCDs) are pleiotropic homeostatic molecules with potent antioxidative and carbonyl quenching properties linked to various inflammatory, metabolic, and neurological diseases, as well as exercise performance. However, the distribution and metabolism of HCDs across tissues and species are still unclear. METHODS: Using a sensitive UHPLC-MS/MS approach and an optimized quantification method, we performed a systematic and extensive profiling of HCDs in the mouse, rat, and human body (in n = 26, n = 25, and n = 19 tissues, respectively). RESULTS: Our data show that tissue HCD levels are uniquely produced by carnosine synthase (CARNS1), an enzyme that was preferentially expressed by fast-twitch skeletal muscle fibres and brain oligodendrocytes. Cardiac HCD levels are remarkably low compared to other excitable tissues. Carnosine is unstable in human plasma, but is preferentially transported within red blood cells in humans but not rodents. The low abundant carnosine analogue N-acetylcarnosine is the most stable plasma HCD, and is enriched in human skeletal muscles. Here, N-acetylcarnosine is continuously secreted into the circulation, which is further induced by acute exercise in a myokine-like fashion. CONCLUSION: Collectively, we provide a novel basis to unravel tissue-specific, paracrine, and endocrine roles of HCDs in human health and disease.


Assuntos
Carnosina , Dipeptídeos , Humanos , Ratos , Camundongos , Animais , Dipeptídeos/química , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Carnosina/metabolismo , Carnosina/farmacologia , Histidina/química , Histidina/metabolismo , Espectrometria de Massas em Tandem , Antioxidantes
5.
Nutrients ; 15(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299535

RESUMO

The endothelial glycocalyx (eGC) is a dynamic hair-like layer expressed on the apical surface of endothelial cells throughout the vascular system. This layer serves as an endothelial cell gatekeeper by controlling the permeability and adhesion properties of endothelial cells, as well as by controlling vascular resistance through the mediation of vasodilation. Pathogenic destruction of the eGC could be linked to impaired vascular function, as well as several acute and chronic cardiovascular conditions. Defining the precise functions and mechanisms of the eGC is perhaps the limiting factor of the missing link in finding novel treatments for lifestyle-related diseases such as atherosclerosis, type 2 diabetes, hypertension, and metabolic syndrome. However, the relationship between diet, lifestyle, and the preservation of the eGC is an unexplored territory. This article provides an overview of the eGC's importance for health and disease and describes perspectives of nutritional therapy for the prevention of the eGC's pathogenic destruction. It is concluded that vitamin D and omega-3 fatty acid supplementation, as well as healthy dietary patterns such as the Mediterranean diet and the time management of eating, might show promise for preserving eGC health and, thus, the health of the cardiovascular system.


Assuntos
Diabetes Mellitus Tipo 2 , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Glicocálix , Diabetes Mellitus Tipo 2/metabolismo , Endotélio Vascular/metabolismo , Vasodilatação
7.
Eur J Appl Physiol ; 123(6): 1241-1255, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36781425

RESUMO

PURPOSE: This study assessed the effects of upper-body rowing exercise on cardiorespiratory fitness, traditional cardiometabolic risk factors, and vascular health in individuals with spinal cord injury (SCI). METHODS: Seventeen male and female adults with chronic (> 1 yr) motor-complete and incomplete SCI (level of injury: C4-L3) were randomized to control (CON, n = 9) or exercise (UBROW, n = 8). Participants in UBROW performed 12-week, 3 weekly sessions of 30-min upper-body ergometer rowing exercise, complying with current exercise guidelines for SCI. Cardiorespiratory fitness ([Formula: see text]O2peak), traditional risk factors (lipid profile, glycemic control) as well as inflammatory and vascular endothelium-derived biomarkers (derived from fasting blood samples) were measured before and after 6 (6W) and 12 weeks (12W). Brachial artery resting diameter and flow-mediated dilation (FMD) were determined by ultrasound as exploratory outcomes. RESULTS: UBROW increased [Formula: see text]O2peak from baseline (15.1 ± 5.1 mL/kg/min; mean ± SD) to 6W (16.5 ± 5.3; P < 0.01) and 12W (17.5 ± 6.1; P < 0.01). UBROW increased resting brachial artery diameter from baseline (4.80 ± 0.72 mm) to 12W (5.08 ± 0.91; P < 0.01), with no changes at 6W (4.96 ± 0.91), and no changes in CON. There were no significant time-by-group interactions in traditional cardiometabolic blood biomarkers, or in unadjusted or baseline diameter corrected FMD. Explorative analyses revealed inverse correlations between changes (∆12W-baseline) in endothelin-1 and changes in resting diameter (r = - 0.56) and FMD% (r = - 0.60), both P < 0.05. CONCLUSION: These results demonstrate that 12 weeks of upper-body rowing complying with current exercise guidelines for SCI improves cardiorespiratory fitness and increases resting brachial artery diameter. In contrast, the exercise intervention had no or only modest effects on traditional cardiometabolic risk factors. The study was registered at Clinicaltrials.gov (N-20190053, May 15, 2020).


Assuntos
Aptidão Cardiorrespiratória , Traumatismos da Medula Espinal , Adulto , Humanos , Masculino , Feminino , Artéria Braquial , Fatores de Risco Cardiometabólico , Biomarcadores
8.
Br J Clin Pharmacol ; 89(7): 2179-2189, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36764326

RESUMO

AIMS: The aim of this study is to examine whether colchicine improves ß adrenoceptor-mediated vasodilation in humans by conducting a double-blinded, placebo-controlled intervention study. Colchicine treatment has known beneficial effects on cardiovascular health and reduces the incidence of cardiovascular disease. Studies in isolated rodent arteries have shown that colchicine can enhance ß adrenoceptor-mediated vasodilation, but this has not been determined in humans. METHODS: Middle-aged men with essential hypertension were randomly assigned firstly to acute treatment with either 0.5 mg colchicine (n = 19) or placebo (n = 12). They were subsequently re-randomized for 3 weeks of treatment with either colchicine 0.5 mg twice daily (n = 16) or placebo (n = 15) followed by a washout period of 48-72 h. The vasodilator responses to isoprenaline, acetylcholine and sodium nitroprusside were determined as well as arterial pressure, arterial compliance and plasma inflammatory markers. RESULTS: Acute colchicine treatment increased isoprenaline (by 38% for the highest dose) as well as sodium nitroprusside (by 29% main effect) -induced vasodilation but had no effect on the response to acetylcholine. The 3-week colchicine treatment followed by a washout period did not induce an accumulated or sustained effect on the ß adrenoceptor response, and there was no effect on arterial pressure, arterial compliance or the level of measured inflammatory markers. CONCLUSION: Colchicine acutely enhances ß adrenoceptor- and nitric oxide-mediated changes in vascular conductance in humans, supporting that the mechanism previously demonstrated in rodents, translates to humans. The results provide novel translational evidence for a transient enhancing effect of colchicine on ß adrenoceptor-mediated vasodilation in humans with essential hypertension. CONDENSED ABSTRACT: Preclinical studies in isolated rodent arteries have shown that colchicine can enhance ß adrenoceptor-mediated vasodilation. Here we show that this effect of colchicine can be translated to humans. Acute colchicine treatment was found to increase both isoprenaline- and sodium nitroprusside-induced vasodilation. The study provides the first translational evidence for a transient ß adrenoceptor-mediated vasodilatory effect of colchicine in humans. The finding of an acute effect suggests that it may be clinically important to maintain an adequate bioavailability of colchicine.


Assuntos
Acetilcolina , Vasodilatação , Masculino , Pessoa de Meia-Idade , Humanos , Nitroprussiato/farmacologia , Isoproterenol/farmacologia , Acetilcolina/farmacologia , Colchicina/farmacologia , Hipertensão Essencial , Receptores Adrenérgicos
9.
Cardiovasc Diabetol ; 22(1): 41, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841762

RESUMO

BACKGROUND: Identifying and reducing cardiometabolic risks driven by obesity remains a healthcare challenge. The metabolic syndrome is associated with abdominal obesity and inflammation and is predictive of long-term risk of developing type 2 diabetes and cardiovascular disease in otherwise healthy individuals living with obesity. Therefore, we investigated the effects of adherent exercise, a glucagon-like peptide 1 receptor agonist (GLP-1 RA), or the combination on severity of metabolic syndrome, abdominal obesity, and inflammation following weight loss. METHODS: This was a randomized, double-blinded, placebo-controlled trial. During an 8-week low-calorie diet (800 kcal/day), 195 adults with obesity and without diabetes lost 12% in body weight. Participants were then evenly randomized to four arms of one-year treatment with: placebo, moderate-to-vigorous exercise (minimum of 150 min/week of moderate-intensity or 75 min/week of vigorous-intensity aerobic physical activity or an equivalent combination of both), the GLP-1 RA liraglutide 3.0 mg/day, or a combination (exercise + liraglutide). A total of 166 participants completed the trial. We assessed the prespecified secondary outcome metabolic syndrome severity z-score (MetS-Z), abdominal obesity (estimated as android fat via dual-energy X-ray absorptiometry), and inflammation marker high-sensitivity C-reactive protein (hsCRP). Statistical analysis was performed on 130 participants adherent to the study interventions (per-protocol population) using a mixed linear model. RESULTS: The diet-induced weight loss decreased the severity of MetS-Z from 0.57 to 0.06, which was maintained in the placebo and exercise groups after one year. MetS-Z was further decreased by liraglutide (- 0.37, 95% CI - 0.58 to - 0.16, P < 0.001) and the combination treatment (- 0.48, 95% CI - 0.70 to - 0.25, P < 0.001) compared to placebo. Abdominal fat percentage decreased by 2.6, 2.8, and 6.1 percentage points in the exercise, liraglutide, and combination groups compared to placebo, respectively, and hsCRP decreased only in the combination group compared with placebo (by 43%, P = 0.03). CONCLUSION: The combination of adherent exercise and liraglutide treatment reduced metabolic syndrome severity, abdominal obesity, and inflammation and may therefore reduce cardiometabolic risk more than the individual treatments. Trial registration EudraCT number: 2015-005585-32, ClinicalTrials.gov: NCT04122716.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome Metabólica , Adulto , Humanos , Liraglutida/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Obesidade Abdominal/complicações , Síndrome Metabólica/tratamento farmacológico , Proteína C-Reativa , Obesidade/epidemiologia , Redução de Peso , Exercício Físico , Inflamação/complicações , Método Duplo-Cego
10.
Scand J Med Sci Sports ; 33(5): 586-596, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36587373

RESUMO

BACKGROUND: This study tested the hypothesis that training reduces resting sympathetic activity and improves baroreflex control in both hypertensive and normotensive men but reduces blood pressure only in hypertensive men. METHODS: Middle-aged/older un-medicated stage-1 hypertensive males (mean age 55 ± 3 years; n = 13) and normotensive controls (mean age 60 ± 5 years; n = 12) participated in 8 weeks of supervised high-intensity interval spinning training. Before and after training, muscle sympathetic nerve activity (MSNA) and blood pressure were measured at rest and during a sympatho-excitatory cold pressor test (CPT). Based on the measurements, baroreceptor sensitivity and baroreceptor threshold were calculated. RESULTS: Resting MSNA and baroreceptor sensitivity were similar for the hypertensive and the normotensive groups. Training lowered MSNA (p < 0.05), expressed as burst frequency (burst/min), overall, and to a similar extent, in both groups (17% and 27%, respectively, in hypertensive and normotensive group), whereas blood pressure was only significantly (p < 0.05) lowered (by 4 mmHg in both systolic and diastolic pressure) in the hypertensive group. Training did not (p > 0.05) alter the MSNA or blood pressure response to CPT or increase baroreceptor sensitivity but reduced (p < 0.05) the baroreceptor threshold with a main effect for both groups. Training adherence and intensity were similar in both groups yet absolute maximal oxygen uptake increased by 15% in the normotensive group only. CONCLUSION: The dissociation between the training induced changes in resting MSNA, lack of change in baroreflex sensitivity and the change in blood pressure, suggests that MSNA is not a main cause of the blood pressure reduction with exercise training in un-medicated middle-aged/older men.


Assuntos
Hipertensão , Músculo Esquelético , Masculino , Pessoa de Meia-Idade , Humanos , Idoso , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Músculo Esquelético/fisiologia , Barorreflexo/fisiologia , Exercício Físico/fisiologia , Sistema Nervoso Simpático/fisiologia
11.
J Physiol ; 601(11): 2085-2098, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36300822

RESUMO

Although ageing impairs cardiovascular health in both men and women, the timeline is different between the sexes. This is at least partially attributed to the loss of oestrogen in women at midlife, in connection with menopause. Oestrogen has protective effects on the cardiovascular system, and menopause consequently leads to a rapid and significant decline in cardiovascular health. Notably, oestrogen interacts with its nuclear and membrane receptors leading to changes in proteins of importance for cardiovascular health. Skeletal muscle activity, which affects the expression of many of the same proteins as oestrogen, could potentially counteract the loss of oestrogen at menopause. The hypothesis that exercise can counteract the loss of oestrogen has been explored in several recent studies. It has been found that regular physical activity opposes the detrimental effects not only of ageing, but also of the menopausal transition, on cardiovascular health. Although, vascular benefits can be gained at all ages, initiating physical activity at or soon after menopause may be more effective than at a later time point in life. Intuitively, it is easier to prevent decrements than attempting to regain lost vascular health. This idea is supported by evidence at the molecular level, suggesting that exercise-induced activation of the oestrogen-related receptor-α pathway is more effective soon after menopause compared to later. Together, although a decline in cardiovascular health due to chronological ageing cannot be completely prevented, a physically active lifestyle mitigates age-related cardiovascular impairments. Importantly, regular physical activity through life should always be addressed as the biological norm.


Assuntos
Envelhecimento , Sistema Cardiovascular , Masculino , Humanos , Feminino , Envelhecimento/fisiologia , Menopausa/fisiologia , Estrogênios/metabolismo , Sistema Cardiovascular/metabolismo , Exercício Físico/fisiologia
12.
J Vis Exp ; (202)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163264

RESUMO

Doppler ultrasound has revolutionized the assessment of organ blood flow and is widely used in research and clinical settings. While Doppler ultrasound-based assessment of contracting leg muscle blood flow is common in human studies, the reliability of this method requires further investigation. Therefore, this study aimed to investigate the within-day test-retest, between-day test-retest, and inter-rater reliability of Doppler ultrasound for assessing leg blood flow during rest and graded single-leg knee-extensions (0 W, 6 W, 12 W, and 18 W), with the ultrasound probe being removed between measurements. The study included thirty healthy subjects (age: 33 ± 9.3, male/female: 14/16) who visited the laboratory on two different experimental days separated by 10 days. The study did not control for major confounders such as nutritional state, time of day, or hormonal status. Across different exercise intensities, the results demonstrated high within-day reliability with a coefficient of variation (CV) ranging from 4.0% to 4.3%, acceptable between-day reliability with a CV ranging from 10.1% to 20.2%, and inter-rater reliability with a CV ranging from 17.9% to 26.8%. Therefore, in a real-life clinical scenario where controlling various environmental factors is challenging, Doppler ultrasound can be used to determine leg blood flow during submaximal single-leg knee-extensor exercise with high within-day reliability and acceptable between-day reliability when performed by the same sonographer.


Assuntos
Exercício Físico , Perna (Membro) , Humanos , Feminino , Masculino , Adulto Jovem , Adulto , Perna (Membro)/diagnóstico por imagem , Perna (Membro)/irrigação sanguínea , Reprodutibilidade dos Testes , Exercício Físico/fisiologia , Fluxo Sanguíneo Regional , Músculo Esquelético , Ultrassonografia Doppler
14.
Med Sci Sports Exerc ; 54(10): 1714-1728, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35522254

RESUMO

PURPOSE: This study aimed to investigate the effect of intensity and duration of continuous and interval exercise training on capillarization in skeletal muscle of healthy adults. METHODS: PubMed and Web of Science were searched from inception to June 2021. Eligibility criteria for studies were endurance exercise training >2 wk in healthy adults, and the capillary to fiber ratio (C:F) and/or capillary density (CD) reported. Meta-analyses were performed, and subsequent subgroup analyses were conducted by the characteristics of participants and training scheme. RESULTS: Fifty-seven trials from 38 studies were included (10%/90%, athletic/sedentary). C:F was measured in 391 subjects from 47 trials, whereas CD was measured in 428 subjects from 50 trials. Exercise training increased C:F (mean difference, 0.33 (95% confidence interval, 0.30-0.37)) with low heterogeneity ( I2 = 45.08%) and CD (mean difference, 49.8 (36.9-62.6) capillaries per millimeter squared) with moderate heterogeneity ( I2 = 68.82%). Compared with low-intensity training (<50% of maximal oxygen consumption (V̇O 2max )), 21% higher relative change in C:F was observed after continuous moderate-intensity training (50%-80% of V̇O 2max ) and 54% higher change after interval training with high intensity (80%-100% of V̇O 2max ) in sedentary subjects. The magnitude of capillary growth was not dependent on training intervention duration. In already trained subjects, no additional increase in capillarization was observed with various types of training. CONCLUSIONS: In sedentary subjects, continuous moderate-intensity training and interval training with high intensity lead to increases in capillarization, whereas low-intensity training has less effect. Within the time frame studied, no effect on capillarization was established regarding training duration in sedentary subjects. The meta-analysis highlights the need for further studies in athlete groups to discern if increased capillarization can be obtained, and if so, which combination is optimal (time vs intensity).


Assuntos
Exercício Físico , Músculo Esquelético , Adulto , Exercício Físico/fisiologia , Terapia por Exercício , Voluntários Saudáveis , Humanos , Músculo Esquelético/irrigação sanguínea , Consumo de Oxigênio
15.
Med Sci Sports Exerc ; 54(9): 1417-1427, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35420578

RESUMO

INTRODUCTION: Regular exercise training reduces arterial blood pressure, but the underlying mechanisms are unclear. Here, we evaluated the potential involvement of pannexin 1, an ATP releasing channel, in the blood pressure-reducing effect of training. METHODS: Middle-age men, 13 normotensive and 14 nonmedicated stage 1 hypertensive, completed 8 wk of intensive aerobic cycle training. Before and after training, blood pressure and changes in leg vascular conductance, induced by femoral arterial infusion of tyramine (induces endogenous noradrenaline release), acetylcholine, or sodium nitroprusside, were measured during control conditions and after acute pannexin 1 inhibition by probenecid. A skeletal muscle biopsy was obtained from the thigh, pre- and posttraining. RESULTS: Exercise training reduced mean systolic and diastolic blood pressure by ~5 ( P = 0.013) and 5 mm Hg ( P < 0.001), respectively, in the hypertensive group only. The reduction in blood pressure was not related to changes in pannexin 1 function because mean arterial blood pressure and tyramine-induced vasoconstriction remain unaltered by pannexin 1 inhibition after training in both groups. After training, pannexin 1 inhibition enhanced leg vascular conductance in the normo- and hypertensive groups at baseline (41.5%, P = 0.0036, and 37.7%, P = 0.024, respectively) and in response to sodium nitroprusside infusion (275%, P = 0.038, and 188%, P = 0.038, respectively). Training did not alter the pannexin 1 protein expression in skeletal muscle. Training enhanced the vasodilator response to acetylcholine infusion and increased the expression of microvascular function-relevant proteins. CONCLUSIONS: The exercise training-induced lowering of arterial blood pressure in nonmedicated hypertensive men does not involve an altered function of pannexin 1.


Assuntos
Hipertensão , Vasodilatação , Acetilcolina/farmacologia , Pressão Arterial , Hipertensão Essencial , Exercício Físico/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Nitroprussiato/farmacologia , Tiramina/farmacologia , Vasodilatação/fisiologia
17.
Hypertension ; 79(5): 1132-1143, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35291811

RESUMO

BACKGROUND: In preclinical models, the pannexin-1 channel has been shown to be involved in blood pressure regulation through an effect on peripheral vascular resistance. Pannexin-1 releases ATP, which can activate constrictive purinergic receptors on the smooth muscle cells. Pannexin-1 opening is proposed to be mediated by α-adrenergic receptors to potentiate sympathetic constriction. This positions pannexin-1 as a putative pharmacological target in blood pressure regulation in humans. The aim was to provide the first translational evidence for a role of pannexin-1 in essential hypertension in humans by use of an advanced invasive mechanistic approach. METHODS: Middle-aged stage-1 hypertensive (n=13; 135.7±6.4 over 83.7±3.7 mm Hg) and normotensive men (n=12; 117.3±5.7 over 72.2±3.5 mm Hg) were included. Blood pressure and leg vascular resistance were determined during femoral arterial infusion of tyramine (α-adrenergic receptor stimulation), sodium nitroprusside, and acetylcholine. Measurements were made during control conditions and with pannexin-1 blockade (3000 mg probenecid). Expression of Pannexin-1, purinergic- and α-adrenergic receptors in skeletal muscle biopsies was determined by Western blot. RESULTS: The changes in leg vascular resistance in response to tyramine (+289% versus +222%), sodium nitroprusside (-82% versus -78%) and acetylcholine (-40% versus -44%) infusion were not different between the 2 groups (P>0.05) and pannexin-1 blockade did not alter these variables (P>0.05). Expression of pannexin-1 and of purinergic- and α-adrenergic receptors was not different between the 2 groups (P>0.05). CONCLUSIONS: Contrary to our hypothesis, the data demonstrate that pannexin-1 does not contribute to the elevated blood pressure in essential hypertension, a finding, which also opposes that reported in preclinical models.


Assuntos
Acetilcolina , Hipertensão , Acetilcolina/farmacologia , Conexinas , Hipertensão Essencial , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso , Nitroprussiato/farmacologia , Receptores Adrenérgicos alfa/fisiologia , Tiramina/farmacologia
19.
Front Cardiovasc Med ; 9: 826959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35224058

RESUMO

The decline in estrogen at menopause poses a critical challenge to cardiovascular and metabolic health. Recently, a growing interest in the role of phytoestrogens, with a particular focus on isoflavones, has emerged as they can bind to estrogen receptors and may mimic the roles of endogenous estrogen. Fermented red clover extract (RC) contains isoflavones with superior bioavailability compared to non-fermented isoflavones, however little is known regarding the impact of isoflavones on cardiovascular and metabolic health. We assessed markers of vascular health in plasma and skeletal muscle samples obtained from healthy but sedentary early post-menopausal women (n = 10; 54 ± 4 years) following 2 weeks of twice daily treatment with placebo (PLA) or RC (60 mg isoflavones per day). The two interventions were administered using a randomized, double-blind, crossover design with a two-week washout period. Plasma samples were utilized for assessment of markers of vascular inflammation. There was a statistically significant reduction (~5.4%) in vascular cell adhesion molecule 1 (VCAM-1) following 2 weeks of RC supplementation compared to PLA (p = 0.03). In contrast, there was no effect of RC supplementation compared to PLA on skeletal muscle estrogen receptor content and enzymes related to vascular function, and angiogenesis. Supplementation with RC reduces vascular inflammation in early post-menopausal women and future studies should address the long-term impact of daily supplementation with RC after menopause.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA