Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transl Vis Sci Technol ; 11(9): 34, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36178783

RESUMO

Purpose: Biallelic pathogenic variants in ABCA4 are the commonest cause of monogenic retinal disease. The full-field electroretinogram (ERG) quantifies severity of retinal dysfunction. We explored application of machine learning in ERG interpretation and in genotype-phenotype correlations. Methods: International standard ERGs in 597 cases of ABCA4 retinopathy were classified into three functional phenotypes by human experts: macular dysfunction alone (group 1), or with additional generalized cone dysfunction (group 2), or both cone and rod dysfunction (group 3). Algorithms were developed for automatic selection and measurement of ERG components and for classification of ERG phenotype. Elastic-net regression was used to quantify severity of specific ABCA4 variants based on effect on retinal function. Results: Of the cohort, 57.6%, 7.4%, and 35.0% fell into groups 1, 2, and 3 respectively. Compared with human experts, automated classification showed overall accuracy of 91.8% (SE, 0.169), and 96.7%, 39.3%, and 93.8% for groups 1, 2, and 3. When groups 2 and 3 were combined, the average holdout group accuracy was 93.6% (SE, 0.142). A regression model yielded phenotypic severity scores for the 47 commonest ABCA4 variants. Conclusions: This study quantifies prevalence of phenotypic groups based on retinal function in a uniquely large single-center cohort of patients with electrophysiologically characterized ABCA4 retinopathy and shows applicability of machine learning. Novel regression-based analyses of ABCA4 variant severity could identify individuals predisposed to severe disease. Translational Relevance: Machine learning can yield meaningful classifications of ERG data, and data-driven scoring of genetic variants can identify patients likely to benefit most from future therapies.


Assuntos
Eletrorretinografia , Doenças Retinianas , Transportadores de Cassetes de Ligação de ATP/genética , Humanos , Aprendizado de Máquina , Doenças Retinianas/diagnóstico , Doenças Retinianas/genética , Tomografia de Coerência Óptica
2.
J Biomed Opt ; 20(9): 096001, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26325264

RESUMO

Bioluminescence imaging is a noninvasive technique whereby surface weighted images of luminescent probes within animals are used to characterize cell count and function. Traditionally, data are collected over the entire emission spectrum of the source using no filters and are used to evaluate cell count/function over the entire spectrum. Alternatively, multispectral data over several wavelengths can be incorporated to perform tomographic reconstruction of source location and intensity. However, bandpass filters used for multispectral data acquisition have a specific bandwidth, which is ignored in the reconstruction. In this work, ignoring the bandwidth is shown to introduce a dependence of the recovered source intensity on the bandwidth of the filters. A method of accounting for the bandwidth of filters used during multispectral data acquisition is presented and its efficacy in increasing the quantitative accuracy of bioluminescence tomography is demonstrated through simulation and experiment. It is demonstrated that while using filters with a large bandwidth can dramatically decrease the data acquisition time, if not accounted for, errors of up to 200% in quantitative accuracy are introduced in two-dimensional planar imaging, even after normalization. For tomographic imaging, the use of this method to account for filter bandwidth dramatically improves the quantitative accuracy.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia Óptica/métodos , Algoritmos , Animais , Simulação por Computador , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA