Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 40(15): 2342-2351, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35282925

RESUMO

An orally active vaccine capable of boosting SARS-CoV-2 immune responses in previously infected or vaccinated individuals would help efforts to achieve and sustain herd immunity. Unlike mRNA-loaded lipid nanoparticles and recombinant replication-defective adenoviruses, replicating vesicular stomatitis viruses with SARS-CoV-2 spike glycoproteins (VSV-SARS2) were poorly immunogenic after intramuscular administration in clinical trials. Here, by G protein trans-complementation, we generated VSV-SARS2(+G) virions with expanded target cell tropism. Compared to parental VSV-SARS2, G-supplemented viruses were orally active in virus-naive and vaccine-primed cynomolgus macaques, powerfully boosting SARS-CoV-2 neutralizing antibody titers. Clinical testing of this oral VSV-SARS2(+G) vaccine is planned.


Assuntos
COVID-19 , Rhabdoviridae , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Lipossomos , Nanopartículas , Primatas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
2.
mSphere ; 6(3): e0017021, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34077262

RESUMO

Neutralizing antibodies are key determinants of protection from future infection, yet well-validated high-throughput assays for measuring titers of SARS-CoV-2-neutralizing antibodies are not generally available. Here, we describe the development and validation of IMMUNO-COV v2.0, a scalable surrogate virus assay, which titrates antibodies that block infection of Vero-ACE2 cells by a luciferase-encoding vesicular stomatitis virus displaying SARS-CoV-2 spike glycoproteins (VSV-SARS2-Fluc). Antibody titers, calculated using a standard curve consisting of stepped concentrations of SARS-CoV-2 spike monoclonal antibody, correlated closely (P < 0.0001) with titers obtained from a gold standard 50% plaque-reduction neutralization test (PRNT50%) performed using a clinical isolate of SARS-CoV-2. IMMUNO-COV v2.0 was comprehensively validated using data acquired from 242 assay runs performed over 7 days by five analysts, utilizing two separate virus lots, and 176 blood samples. Assay performance was acceptable for clinical use in human serum and plasma based on parameters including linearity, dynamic range, limit of blank and limit of detection, dilutional linearity and parallelism, precision, clinical agreement, matrix equivalence, clinical specificity and sensitivity, and robustness. Sufficient VSV-SARS2-Fluc virus reagent has been banked to test 5 million clinical samples. Notably, a significant drop in IMMUNO-COV v2.0 neutralizing antibody titers was observed over a 6-month period in people recovered from SARS-CoV-2 infection. Together, our results demonstrate the feasibility and utility of IMMUNO-COV v2.0 for measuring SARS-CoV-2-neutralizing antibodies in vaccinated individuals and those recovering from natural infections. Such monitoring can be used to better understand what levels of neutralizing antibodies are required for protection from SARS-CoV-2 and what booster dosing schedules are needed to sustain vaccine-induced immunity. IMPORTANCE Since its emergence at the end of 2019, SARS-CoV-2, the causative agent of COVID-19, has caused over 100 million infections and 2.4 million deaths worldwide. Recently, countries have begun administering approved COVID-19 vaccines, which elicit strong immune responses and prevent disease in most vaccinated individuals. A key component of the protective immune response is the production of neutralizing antibodies capable of preventing future SARS-CoV-2 infection. Yet, fundamental questions remain regarding the longevity of neutralizing antibody responses following infection or vaccination and the level of neutralizing antibodies required to confer protection. Our work is significant as it describes the development and validation of a scalable clinical assay that measures SARS-CoV-2-neutraling antibody titers. We have critical virus reagent to test over 5 million samples, making our assay well suited for widespread monitoring of SARS-CoV-2-neutralizing antibodies, which can in turn be used to inform vaccine dosing schedules and answer fundamental questions regarding SARS-CoV-2 immunity.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Ensaios de Triagem em Larga Escala/métodos , Animais , Chlorocebus aethiops , Humanos , Limite de Detecção , Testes de Neutralização/métodos , Índice de Gravidade de Doença , Células Vero
3.
bioRxiv ; 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32577655

RESUMO

We here describe the development and validation of IMMUNO-COV™, a high-throughput clinical test to quantitatively measure SARS-CoV-2-neutralizing antibodies, the specific subset of anti-SARS-CoV-2 antibodies that block viral infection. The test measures the capacity of serum or purified antibodies to neutralize a recombinant Vesicular Stomatitis Virus (VSV) encoding the SARS-CoV-2 spike glycoprotein. This recombinant virus (VSV-SARS-CoV-2-S-Δ19CT) induces fusion in Vero cell monolayers, which is detected as luciferase signal using a dual split protein (DSP) reporter system. VSV-SARS-CoV-2-S-Δ19CT infection was blocked by monoclonal α-SARS-CoV-2-spike antibodies and by plasma or serum from SARS-CoV-2 convalescing individuals. The assay exhibited 100% specificity in validation tests, and across all tests zero false positives were detected. In blinded analyses of 230 serum samples, only two unexpected results were observed based on available clinical data. We observed a perfect correlation between results from our assay and 80 samples that were also assayed using a commercially available ELISA. To quantify the magnitude of the anti-viral response, we generated a calibration curve by adding stepped concentrations of α-SARS-CoV-2-spike monoclonal antibody to pooled SARS-CoV-2 seronegative serum. Using the calibration curve and a single optimal 1:100 serum test dilution, we reliably measured neutralizing antibody levels in each test sample. Virus neutralization units (VNUs) calculated from the assay correlated closely (p < 0.0001) with PRNT EC50 values determined by plaque reduction neutralization test against a clinical isolate of SARS-CoV-2. Taken together, these results demonstrate that the IMMUNO-COV™ assay accurately quantitates SARS-CoV-2 neutralizing antibodies in human sera and therefore is a potentially valuable addition to the currently available serological tests. The assay can provide vital information for comparing immune responses to the various SARS-CoV-2 vaccines that are currently in development, or for evaluating donor eligibility in convalescent plasma therapy studies.

4.
Nat Commun ; 9(1): 1371, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636452

RESUMO

HIV-1 causes chronic inflammation and AIDS in humans, whereas related simian immunodeficiency viruses (SIVs) replicate efficiently in their natural hosts without causing disease. It is currently unknown to what extent virus-specific properties are responsible for these different clinical outcomes. Here, we incorporate two putative HIV-1 virulence determinants, i.e., a Vpu protein that antagonizes tetherin and blocks NF-κB activation and a Nef protein that fails to suppress T cell activation via downmodulation of CD3, into a non-pathogenic SIVagm strain and test their impact on viral replication and pathogenicity in African green monkeys. Despite sustained high-level viremia over more than 4 years, moderately increased immune activation and transcriptional signatures of inflammation, the HIV-1-like SIVagm does not cause immunodeficiency or any other disease. These data indicate that species-specific host factors rather than intrinsic viral virulence factors determine the pathogenicity of primate lentiviruses.


Assuntos
HIV-1/patogenicidade , Especificidade de Hospedeiro , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Lentivirus de Primatas/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/patogenicidade , Proteínas Virais Reguladoras e Acessórias/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Sequência de Aminoácidos , Animais , Antígeno 2 do Estroma da Médula Óssea/genética , Antígeno 2 do Estroma da Médula Óssea/imunologia , Complexo CD3/genética , Complexo CD3/imunologia , Chlorocebus aethiops , Feminino , Regulação da Expressão Gênica , HIV-1/crescimento & desenvolvimento , Proteínas do Vírus da Imunodeficiência Humana/genética , Humanos , Lentivirus de Primatas/patogenicidade , Ativação Linfocitária , NF-kappa B/genética , NF-kappa B/imunologia , Alinhamento de Sequência , Transdução de Sinais , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Transcrição Gênica , Carga Viral , Proteínas Virais Reguladoras e Acessórias/genética , Virulência , Replicação Viral , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
5.
Antiviral Res ; 141: 1-6, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28161580

RESUMO

The immune evasion of wild-type (wt) rabies virus (RABV) has been attributed to its glycoprotein (G), particularly to their inefficiency to bind/enter into dendritic cells (DCs). However, the domain responsible for G-mediated DC activation is not clear. In the present study, attempts were made to map the domain(s) on the G involved in differential DC activation using laboratory-adapted and wt viruses. Recombinant RABVs with exchange in each of the structural domains such as signal peptide (sp), ectodomain (et), transmembrane domain (tm), cytoplasmic tail (ct) of the G between wt and laboratory-adapted strains were constructed. Characterizations of these recombinant RABVs show that the viruses containing the sp, tm and ct from the wt G are capable of growing in high titer by efficient cell-to-cell spread, similar to laboratory-adapted virus. On the other hand, recombinant virus containing the et domain from wt G was inefficient in cell-to-cell spread and grew in lower levels, similar to the wt RABV. Analysis of DC activation shows that viruses containing sp and tm from wt G are efficient in binding to and activating DCs. However, viruses containing the et domain from wt G are incompetent in binding to and activating DCs. Analysis of the G expression in the infected cells suggests that the level of G expression is regulated solely by the ct domain, indicating the level of G expression and DC activation are governed by different domains. Together, our results demonstrate that G-mediated DC activation is regulated by the et domain while the level of G expression by the ct domain.


Assuntos
Antígenos Virais/química , Antígenos Virais/imunologia , Células Dendríticas/imunologia , Glicoproteínas/química , Glicoproteínas/imunologia , Vírus da Raiva/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Antígenos Virais/metabolismo , Diferenciação Celular , Células Cultivadas , Células Dendríticas/virologia , Glicoproteínas/metabolismo , Sinais Direcionadores de Proteínas/genética , Estrutura Terciária de Proteína/genética , Vírus da Raiva/química , Vírus da Raiva/genética , Vírus da Raiva/crescimento & desenvolvimento , Proteínas do Envelope Viral/metabolismo
7.
PLoS Negl Trop Dis ; 9(8): e0004023, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26292099

RESUMO

METHODOLOGY/PRINCIPAL FINDINGS: The experimental infection of dogs with TriGAS induced high levels of VNA in the serum, whereas wt RABV infection did not. Dogs infected with TriGAS developed antibodies against the virus including its glycoprotein, whereas dogs infected with DRV-NG11 only developed rabies antibodies that are presumably specific for the nucleoprotein, (N) and not the glycoprotein (G). We show that infection with TriGAS induces early activation of B cells in the draining lymph nodes and persistent activation of DCs and B cells in the blood. On the other hand, infection with DRV-NG11 fails to induce the activation of DCs and B cells and further reduces CD4 T cell production. Further, we show that intrathecal (IT) immunization of TriGAS not only induced high levels of VNA in the serum but also in the CSF while intramuscular (IM) immunization of TriGAS induced VNA only in the serum. In addition, high levels of total protein and WBC were detected in the CSF of IT immunized dogs, indicating the transient enhancement of blood-brain barrier (BBB) permeability, which is relevant to the passage of immune effectors from periphery into the CNS. CONCLUSIONS/SIGNIFICANCE: IM infection of dogs with TriGAS induced the production of serum VNA whereas, IT immunization of TriGAS in dogs induces high levels of VNA in the periphery as well as in the CSF and transiently enhances BBB permeability. In contrast, infection with wt DRV-NG11 resulted in the production of RABV-reactive antibodies but VNA and antibodies specific for G were absent. As a consequence, all of the dogs infected with wt DRV-NG11 succumbed to rabies. Thus the failure to activate protective immunity is one of the important features of RABV pathogenesis in dogs.


Assuntos
Doenças do Cão/imunologia , Vírus da Raiva/imunologia , Raiva/veterinária , Animais , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Doenças do Cão/prevenção & controle , Doenças do Cão/virologia , Cães , Raiva/imunologia , Raiva/prevenção & controle , Raiva/virologia , Vacina Antirrábica/administração & dosagem , Vacina Antirrábica/genética , Vacina Antirrábica/imunologia , Vírus da Raiva/genética , Vírus da Raiva/fisiologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
8.
J Virol ; 89(4): 2157-69, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25473057

RESUMO

UNLABELLED: Dendritic cells (DCs) are the most efficient antigen-presenting cells, playing a key role in the adaptive immune responses to viral infections. Our studies demonstrate that wild-type (wt) rabies virus (RABV) does not activate DCs. Adoptive transfer of DCs primed with wt RABV did not activate DCs, stimulate virus neutralizing antibodies (VNA), or protect recipients against challenge. However, adoptive transfer of DCs primed with laboratory-attenuated RABV resulted in DC activation, production of VNA, and protection against challenge. In vitro studies with recombinant RABV (laboratory-attenuated RABV expressing the glycoprotein or the phosphoprotein from wt RABV) demonstrate that DC activation is dependent on the glycoprotein and involves the IPS-1 pathway. Furthermore, binding to and entry into DCs by wt RABV is severely blocked, and the copy number of de novo-synthesized leader RNA was two logs lower in DCs infected with the wt than in DCs treated with laboratory-attenuated RABV. However, transient transfection of DCs with synthesized leader RNA from either wt or attenuated RABV is capable of activating DCs in a dose-dependent manner. Thus, the inability of wt RABV to activate DCs correlates with its low level of the de novo-synthesized leader RNA. IMPORTANCE: Rabies remains a public health threat, with more than 55,000 fatalities each year around the world. Since DCs play a key role in the adaptive immune responses to viral infections, we investigated the ability of rabies virus (RABV) to activate DCs. It was found that the adoptive transfer of DCs primed with wt RABV did not activate DCs, stimulate VNA, or protect mice against lethal challenge. However, laboratory-attenuated RABV mediates the activation of DCs via the IPS-1 pathway and is glycoprotein dependent. We further show that wt RABV evades DC-mediated immune activation by inefficient binding/entry into DCs and as a result of a reduced level of de novo-synthesized leader RNA. These findings may have important implications in the development of efficient rabies vaccines.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/virologia , Glicoproteínas/imunologia , Vírus da Raiva/imunologia , Regiões 5' não Traduzidas , Animais , Células Cultivadas , Camundongos Endogâmicos BALB C , RNA Viral/genética
9.
PLoS Negl Trop Dis ; 7(9): e2375, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24069466

RESUMO

BACKGROUND: Rabies is traditionally considered a uniformly fatal disease after onset of clinical manifestations. However, increasing evidence indicates that non-lethal infection as well as recovery from flaccid paralysis and encephalitis occurs in laboratory animals as well as humans. METHODOLOGY/PRINCIPAL FINDINGS: Non-lethal rabies infection in dogs experimentally infected with wild type dog rabies virus (RABV, wt DRV-Mexico) correlates with the presence of high level of virus neutralizing antibodies (VNA) in the cerebral spinal fluid (CSF) and mild immune cell accumulation in the central nervous system (CNS). By contrast, dogs that succumbed to rabies showed only little or no VNA in the serum or in the CSF and severe inflammation in the CNS. Dogs vaccinated with a rabies vaccine showed no clinical signs of rabies and survived challenge with a lethal dose of wild-type DRV. VNA was detected in the serum, but not in the CSF of immunized dogs. Thus the presence of VNA is critical for inhibiting virus spread within the CNS and eventually clearing the virus from the CNS. CONCLUSIONS/SIGNIFICANCE: Non-lethal infection with wt RABV correlates with the presence of VNA in the CNS. Therefore production of VNA within the CNS or invasion of VNA from the periphery into the CNS via compromised blood-brain barrier is important for clearing the virus infection from CNS, thereby preventing an otherwise lethal rabies virus infection.


Assuntos
Anticorpos Neutralizantes/líquido cefalorraquidiano , Anticorpos Antivirais/líquido cefalorraquidiano , Líquido Cefalorraquidiano/imunologia , Doenças do Cão/imunologia , Vírus da Raiva/imunologia , Raiva/veterinária , Animais , Doenças do Cão/virologia , Cães , Raiva/imunologia , Raiva/virologia , Análise de Sobrevida
10.
PLoS One ; 8(5): e63384, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23700422

RESUMO

Our previous studies indicated that recombinant rabies viruses (rRABV) expressing chemokines or cytokines (including GM-CSF) could enhance the immunogenicity by recruiting and/or activating dendritic cells (DC). In this study, bacterial flagellin was cloned into the RABV genome and recombinant virus LBNSE-Flagellin was rescued. To compare the immunogenicity of LBNSE-Flagellin with recombinant virus expressing GMCSF (LBNSE-GMCSF), mice were immunized with each of these rRABVs by intramuscular (i.m.) or oral route. The parent virus (LBNSE) without expression of any foreign molecules was included for comparison. The i.m.-immunized mice were bled at three weeks after the immunization for the measurement of virus neutralizing antibody (VNA) and then challenged with 50 LD50 challenge virus standard (CVS-24). Orally immunized mice were boosted after three weeks and then bled and challenged one week after the booster immunization. It was found that both LBNSE-GMCSF and LBNSE-Flagellin recruited/activated more DCs and B cells in the periphery, stimulated higher levels of adaptive immune responses (VNA), and protected more mice against challenge infection than the parent virus LBNSE in both the i.m. and the orally immunized groups. Together, these studies suggest that recombinant RABV expressing GM-CSF or flagellin are more immunogenic than the parent virus in both i.m. and oral immunizations.


Assuntos
Flagelina/biossíntese , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Vírus da Raiva/imunologia , Raiva/prevenção & controle , Vacinas Virais/administração & dosagem , Administração Oral , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linfócitos B/imunologia , Linhagem Celular , Cricetinae , Células Dendríticas/imunologia , Feminino , Humanos , Injeções Intramusculares , Linfonodos/imunologia , Ativação Linfocitária , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Raiva/imunologia , Raiva/virologia , Vírus da Raiva/genética , Vírus da Raiva/metabolismo , Vacinação , Vacinas Sintéticas/administração & dosagem
11.
Genome Announc ; 1(1)2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23469344

RESUMO

A canine rabies virus (RABV) was isolated from a trade dog in Nigeria. Its entire genome was sequenced and found to be closely related to canine RABVs circulating in Africa. Sequence comparison indicates that the virus is closely related to the Africa 2 RABV lineage. The virus is now termed DRV-NG11.

12.
J Virol ; 87(6): 2986-93, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23269806

RESUMO

Untreated rabies virus (RABV) infection leads to death. Vaccine and postexposure treatment have been effective in preventing RABV infection. However, due to cost, rabies vaccination and treatment have not been widely used in developing countries. There are 55,000 human death caused by rabies annually. An efficacious and cost-effective rabies vaccine is needed. Parainfluenza virus 5 (PIV5) is thought to contribute to kennel cough, and kennel cough vaccines containing live PIV5 have been used in dogs for many years. In this work, a PIV5-vectored rabies vaccine was tested in mice. A recombinant PIV5 encoding RABV glycoprotein (G) (rPIV5-RV-G) was administered to mice via intranasal (i.n.), intramuscular (i.m.), and oral inoculation. The vaccinated mice were challenged with a 50% lethal challenge dose (LD(50)) of RABV challenge virus standard 24 (CVS-24) intracerebrally. A single dose of 10(6) PFU of rPIV5-RV-G was sufficient for 100% protection when administered via the i.n. route. The mice vaccinated with a single dose of 10(8) PFU of rPIV5-RV-G via the i.m. route showed very robust protection (90% to 100%). Intriguingly, the mice vaccinated orally with a single dose of 10(8) PFU of rPIV5-RV-G showed a 50% survival rate, which is comparable to the 60% survival rate among mice inoculated with an attenuated rabies vaccine strain, recombinant LBNSE. This is first report of an orally effective rabies vaccine candidate in animals based on PIV5 as a vector. These results indicate that rPIV5-RV-G is an excellent candidate for a new generation of recombinant rabies vaccine for humans and animals and PIV5 is a potential vector for oral vaccines.


Assuntos
Antígenos Virais/imunologia , Portadores de Fármacos , Vetores Genéticos , Glicoproteínas/imunologia , Vacina Antirrábica/imunologia , Raiva/prevenção & controle , Respirovirus/genética , Proteínas do Envelope Viral/imunologia , Administração Intranasal , Administração Oral , Animais , Antígenos Virais/genética , Modelos Animais de Doenças , Glicoproteínas/genética , Injeções Intramusculares , Camundongos , Raiva/imunologia , Vacina Antirrábica/administração & dosagem , Vacina Antirrábica/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Análise de Sobrevida , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética
13.
J Virol ; 86(1): 36-48, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22013062

RESUMO

It is well established that the Nef proteins of human and simian immunodeficiency viruses (HIV and SIV) modulate major histocompatibility complex class I (MHC-I) cell surface expression to protect infected cells against lysis by cytotoxic T lymphocytes (CTLs). Recent data supported the observation that Nef also manipulates CTLs directly by down-modulating CD8αß (J. A. Leonard, T. Filzen, C. C. Carter, M. Schaefer, and K. L. Collins, J. Virol. 85:6867-6881, 2011), but it remained unknown whether this Nef activity is conserved between different lineages of HIV and SIV. In this study, we examined a total of 42 nef alleles from 16 different primate lentiviruses representing most major lineages of primate lentiviruses, as well as nonpandemic HIV-1 strains and the direct precursors of HIV-1 (SIVcpz and SIVgor). We found that the vast majority of these nef alleles strongly down-modulate CD8ß in human T cells. Primate lentiviral Nefs generally interacted specifically with the cytoplasmic tail of CD8ß, and down-modulation of this receptor was dependent on the conserved dileucine-based motif and two adjacent acidic residues (DD/E) in the C-terminal flexible loop of SIV Nef proteins. Both of these motifs are known to be important for the interaction of HIV-1 Nef with AP-2, and they were also shown to be critical for down-modulation of CD4 and CD28, but not MHC-I, by SIV Nefs. Our results show that down-modulation of CD4, CD8ß, and CD28 involves largely overlapping (but not identical) domains and is most likely dependent on conserved interactions of primate lentiviral Nefs with cellular adaptor proteins. Furthermore, our data demonstrate that Nef-mediated down-modulation of CD8αß is a fundamental property of primate lentiviruses and suggest that direct manipulation of CD8+ T cells plays a relevant role in viral immune evasion.


Assuntos
Antígenos CD8/genética , Regulação para Baixo , Produtos do Gene nef/metabolismo , Infecções por Lentivirus/genética , Lentivirus de Primatas/metabolismo , Animais , Antígenos CD8/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Linhagem Celular , Células Cultivadas , Produtos do Gene nef/genética , Humanos , Infecções por Lentivirus/imunologia , Infecções por Lentivirus/virologia , Lentivirus de Primatas/classificação , Lentivirus de Primatas/genética , Lentivirus de Primatas/isolamento & purificação
14.
J Virol ; 84(23): 12245-54, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20881048

RESUMO

Understanding the lack of disease progression in nonpathogenic simian immunodeficiency virus (SIV) infections is essential for deciphering the immunopathogenesis of human AIDS. Yet, in vivo studies have been hampered by a paucity of infectious molecular clones (IMCs) of SIV suitable to dissect the viral and host factors responsible for the nonpathogenic phenotype. Here, we describe the identification, cloning, and biological analysis of the first transmitted/founder (T/F) virus representing a nonpathogenic SIV infection. Blood was collected at peak viremia from an acutely infected sabaeus monkey (Chlorocebus sabaeus) inoculated intravenously with an African green monkey SIV (SIVagm) strain (Sab92018) that had never been propagated in vitro. To generate IMCs, we first used conventional (bulk) PCR to amplify full-length viral genomes from peripheral blood mononuclear cell (PBMC) DNA. Although this yielded two intact SIVagmSab genomes, biological characterization revealed that both were replication defective. We then performed single-genome amplification (SGA) to generate partially overlapping 5' (n = 10) and 3' (n = 13) half genomes from plasma viral RNA. Analysis of these amplicons revealed clusters of nearly identical viral sequences representing the progeny of T/F viruses. Synthesis of the consensus sequence of one of these generated an IMC (Sab92018ivTF) that produced infectious CCR5-tropic virions and replicated to high titers in Molt-4 clone 8 cells and African green monkey PBMCs. Sab92018ivTF also initiated productive infection in sabaeus monkeys and faithfully recapitulated the replication kinetics and nonpathogenic phenotype of the parental Sab92018 strain. These results thus extend the T/F virus concept to nonpathogenic SIV infections and provide an important new tool to define viral determinants of disease nonprogression.


Assuntos
Cercopithecinae , Genoma Viral/genética , Fenótipo , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/patogenicidade , Animais , Sequência de Bases , Western Blotting , Linfócitos T CD4-Positivos/imunologia , Clonagem Molecular , Análise por Conglomerados , Primers do DNA/genética , Progressão da Doença , Citometria de Fluxo , Dados de Sequência Molecular , Técnicas de Amplificação de Ácido Nucleico , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Síndrome de Imunodeficiência Adquirida dos Símios/fisiopatologia , Vírus da Imunodeficiência Símia/imunologia , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA