Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Hematol ; 98(10): 1598-1605, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37584425

RESUMO

BACKGROUND: Sickle cell disease (SCD) remains prevalent because heterozygous carriers (HbAS) are partially resistant to Plasmodium falciparum malaria. Sickle hemoglobin (HbS) polymerization in low and intermediate oxygen (O2 ) conditions is the main driver of HbAS-driven resistance to P. falciparum malaria. However, epidemiological studies have reported mixed malaria morbidity and mortality outcomes in individuals with sickle cell disease (SCD). While maximum-tolerated dose hydroxyurea has been shown to lower malaria incidence, fetal hemoglobin (HbF), an inhibitor of HbS polymerization that is variably packaged in F-erythrocytes, might provide hemoglobin that is accessible to the parasite for feeding. METHODS: To explore that risk, we examined the effect of variable mean corpuscular fetal hemoglobin (MCHF) on P. falciparum proliferation, invasion, and development in HbSS RBCs. RESULTS: We found that greater MCHF in HbSS red blood cells (RBCs) is associated with increased P. falciparum proliferation in O2 environments comparable with the microcirculation. Moreover, both parasite invasion and intracellular growth, the major components of proliferation, occur predominantly in F-erythrocytes and are augmented with increasing MCHF. CONCLUSIONS: HbF modifies P. falciparum infection in HbSS RBCs, further highlighting the complexity of the molecular interactions between these two diseases. Other inhibitors of HbS polymerization that do not increase HbF or F-erythrocytes should be independently assessed for their effects on P. falciparum malaria proliferation in HbSS RBCs.


Assuntos
Anemia Falciforme , Malária Falciparum , Plasmodium falciparum , Humanos , Hemoglobina Fetal , Proliferação de Células , Eritrócitos
2.
Open Biol ; 12(8): 220015, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35920043

RESUMO

Protein phosphatase 1 (PP1) is a key enzyme for Plasmodium development. However, the detailed mechanisms underlying its regulation remain to be deciphered. Here, we report the functional characterization of the Plasmodium berghei leucine-rich repeat protein 1 (PbLRR1), an orthologue of SDS22, one of the most ancient and conserved PP1 interactors. Our study shows that PbLRR1 is expressed during intra-erythrocytic development of the parasite, and up to the zygote stage in mosquitoes. PbLRR1 can be found in complex with PbPP1 in both asexual and sexual stages and inhibits its phosphatase activity. Genetic analysis demonstrates that PbLRR1 depletion adversely affects the development of oocysts. PbLRR1 interactome analysis associated with phospho-proteomics studies identifies several novel putative PbLRR1/PbPP1 partners. Some of these partners have previously been characterized as essential for the parasite sexual development. Interestingly, and for the first time, Inhibitor 3 (I3), a well-known and direct interactant of Plasmodium PP1, was found to be drastically hypophosphorylated in PbLRR1-depleted parasites. These data, along with the detection of I3 with PP1 in the LRR1 interactome, strongly suggest that the phosphorylation status of PbI3 is under the control of the PP1-LRR1 complex and could contribute (in)directly to oocyst development. This study provides new insights into previously unrecognized PbPP1 fine regulation of Plasmodium oocyst development through its interaction with PbLRR1.


Assuntos
Proteínas de Repetições Ricas em Leucina , Plasmodium berghei , Animais , Oocistos/metabolismo , Fosforilação , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
3.
Microorganisms ; 10(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35336160

RESUMO

Parasites belonging to the Apicomplexa phylum still represent a major public health and world-wide socioeconomic burden that is greatly amplified by the spread of resistances against known therapeutic drugs. Therefore, it is essential to provide the scientific and medical communities with innovative strategies specifically targeting these organisms. In this review, we present an overview of the diversity of the phosphatome as well as the variety of functions that phosphatases display throughout the Apicomplexan parasites' life cycles. We also discuss how this diversity could be used for the design of innovative and specific new drugs/therapeutic strategies.

4.
Trends Parasitol ; 37(10): 922-932, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34119440

RESUMO

Epidemiological indicators describing population-level malaria transmission dynamics are widely used to guide policy recommendations. However, the determinants of malaria outcomes within individuals are still poorly understood. This conceptual gap partly reflects the fact that there are few indicators that robustly predict the trajectory of individual infections or clinical outcomes. The parasite multiplication rate (PMR) is a widely used indicator for the Plasmodium intraerythrocytic development cycle (IDC), for example, but its relationship to clinical outcomes is complex. Here, we review its calculation and use in P. falciparum malaria research, as well as the parasite and host factors that impact it. We also provide examples of metrics that can help to link within-host dynamics to malaria clinical outcomes when used alongside the PMR.


Assuntos
Plasmodium falciparum , Proteínas de Protozoários , Animais , Eritrócitos/parasitologia , Interações Hospedeiro-Parasita , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo
5.
Trends Parasitol ; 37(2): 154-164, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33036936

RESUMO

Protein phosphatase type 1 (PP1) forms a wide range of Ser/Thr-specific phosphatase holoenzymes which contain one catalytic subunit (PP1c), present in all eukaryotic cells, associated with variable subunits known as regulatory proteins. It has recently been shown that regulators take a leading role in the organization and the control of PP1 functions. Many studies have addressed the role of these regulators in diverse organisms, including humans, and investigated their link to diseases. In this review we summarize recent advances on the role of PP1c in Plasmodium, its interactome and regulators. As a proof of concept, peptides interfering with the regulator binding capacity of PP1c were shown to inhibit the growth of P. falciparum, suggesting their potential as drug precursors.


Assuntos
Malária/parasitologia , Plasmodium/enzimologia , Proteína Fosfatase 1/metabolismo , Humanos , Peptídeos/metabolismo , Ligação Proteica
7.
Bio Protoc ; 10(11): e3647, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33659316

RESUMO

The study of host/pathogen interactions at the cellular level during Plasmodium intra-erythrocytic cycle requires differential extraction techniques aiming to analyze the different compartments of the infected cell. Various protocols have been proposed in the literature to study specific compartments and/or membranes in the infected erythrocyte. The task remains delicate despite the use of enzymes or detergents theoretically capable of degrading specific membranes inside the infected cell. The remit of this protocol is to propose a method to isolate the erythrocyte cytosol and ghosts from the other compartments of the infected cell via a percoll gradient. Also, the lysis of the erythrocyte membrane is done using equinatoxin II, which has proven to be more effective at erythrocyte lysis regardless of the cell infection status, compared to the commonly used streptolysin. The parasitophorous vacuole (PV) content is collected after saponin lysis, before recovering membrane and parasite cytosol proteins by Triton X-100 lysis. The lysates thus obtained are analyzed by Western blot to assess the accuracy of the various extraction steps. This protocol allows the separation of the host compartment from the parasite compartments (PV and parasite), leading to potential studies of host proteins as well as parasite proteins exported to the host cell.

8.
Sci Rep ; 9(1): 8120, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31148576

RESUMO

Pseudokinases play key roles in many biological processes but they are poorly understood compared to active kinases. Eight putative pseudokinases have been predicted in Plasmodium species. We selected the unique pseudokinase belonging to tyrosine kinase like (TKL) family for detailed structural and functional analysis in P. falciparum and P. berghei. The primary structure of PfpTKL lacks residues critical for kinase activity, supporting its annotation as a pseudokinase. The recombinant pTKL pseudokinase domain was able to bind ATP, but lacked catalytic activity as predicted. The sterile alpha motif (SAM) and RVxF motifs of PfpTKL were found to interact with the P. falciparum proteins serine repeat antigen 5 (SERA5) and protein phosphatase type 1 (PP1) respectively, suggesting that pTKL has a scaffolding role. Furthermore, we found that PP1c activity in a heterologous model was modulated in an RVxF-dependent manner. During the trophozoite stages, PbpTKL was exported to infected erythrocytes where it formed complexes with proteins involved in cytoskeletal organization or host cell maturation and homeostasis. Finally, genetic analysis demonstrated that viable strains obtained by genomic deletion or knocking down PbpTKL did not affect the course of parasite intra-erythrocytic development or gametocyte emergence, indicating functional redundancy during these parasite stages.


Assuntos
Antígenos de Protozoários/metabolismo , Eritrócitos/parasitologia , Plasmodium/enzimologia , Proteína Fosfatase 1/metabolismo , Proteínas Tirosina Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Animais , Citoesqueleto/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Deleção de Genes , Humanos , Hidrólise , Camundongos , Estrutura Molecular , Filogenia , Dobramento de Proteína , Proteínas Recombinantes/metabolismo , Transcrição Gênica , Transgenes , Técnicas do Sistema de Duplo-Híbrido , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA