Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Evolution ; 77(7): 1682-1690, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37201541

RESUMO

Because of potentially strong eco-evolutionary interactions with their hosts, parasites may initiate or enhance host diversification. The adaptive radiation of cichlid fish in Lake Victoria provides a good system to study the role of parasites at different stages of host speciation. We analyzed the macroparasite infection of four replicates of sympatric blue and red Pundamilia species pairs that vary in their age and extent of differentiation. Sympatric host species differed in parasite community composition and in the infection levels of some of these parasite taxa. Most infection differences were consistent between sampling years, indicating temporal consistency in parasite-mediated divergent selection between species. Infection differentiation increased linearly with genetic differentiation. However, significant infection differences between sympatric species were only found in the oldest, most strongly differentiated Pundamilia species pair. This is inconsistent with parasite-driven speciation. Next, we identified five distinct species of Cichlidogyrus, a genus of highly specific gill parasites that has radiated elsewhere in Africa. Infection profiles of species of Cichlidogyrus differed between sympatric cichlid species only in the oldest and most differentiated pair, again inconsistent with parasite-mediated speciation. To conclude, parasites may contribute to host differentiation after speciation, but do not initiate host speciation.


Assuntos
Ciclídeos , Parasitos , Doenças Parasitárias , Trematódeos , Animais , Lagos , Ciclídeos/genética , África , Especiação Genética
2.
Hydrobiologia ; 848(16): 3817-3831, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720171

RESUMO

Parasite-mediated selection may initiate or enhance differentiation between host populations that are exposed to different parasite infections. Variation in infection among populations may result from differences in host ecology (thereby exposure to certain parasites) and/or intrinsic immunological traits. Species of cichlid fish, even when recently diverged, often differ in parasite infection, but the contributions of intrinsic and extrinsic causes are unknown. Here, we compare infection patterns between two closely related host species from Lake Victoria (genus Pundamilia), using wild-caught and first-generation laboratory-reared fish, as well as laboratory-reared hybrids. Three of the commonest ectoparasite species observed in the wild were also present in the laboratory populations. However, the infection differences between the host species as observed in the wild were not maintained in laboratory conditions. In addition, hybrids did not differ in infection from either parental species. These findings suggest that the observed species differences in infection in the wild might be mainly driven by ecology-related effects (i.e. differential exposure), rather than by intrinsic species differences in immunological traits. Thus, while there is scope for parasite-mediated selection in Pundamilia in the wild, it has apparently not yet generated divergent evolutionary responses and may not enhance assortative mating among closely related species.

3.
Int J Parasitol ; 51(2-3): 201-214, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33161003

RESUMO

Heterogeneous exposure to parasites may contribute to host species differentiation. Hosts often harbour multiple parasite species which may interact and thus modify each other's effects on host fitness. Antagonistic or synergistic interactions between parasites may be detectable as niche segregation within hosts. Consequently, the within-host distribution of different parasite taxa may constitute an important axis of infection variation among host populations and species. We investigated the microhabitat distributions and species interactions of gill parasites (four genera) infecting 14 sympatric cichlid species in Lake Victoria, Tanzania. We found that the two most abundant ectoparasite genera (the monogenean Cichlidogyrus spp. and the copepod Lamproglena monodi) were non-randomly distributed across the host gills and their spatial distribution differed between host species. This may indicate microhabitat selection by the parasites and cryptic differences in the host-parasite interaction among host species. Relationships among ectoparasite genera were synergistic: the abundances of Cichlidogyrus spp. and the copepods L. monodi and Ergasilus lamellifer tended to be positively correlated. In contrast, relationships among morphospecies of Cichlidogyrus were antagonistic: the abundances of morphospecies were negatively correlated. Together with niche overlap, this suggests competition among morphospecies of Cichlidogyrus. We also assessed the reproductive activity of the copepod species (the proportion of individuals carrying egg clutches), as it may be affected by the presence of other parasites and provide another indicator of the species specificity of the host-parasite relationship. Copepod reproductive activity did not differ between host species and was not associated with the presence or abundance of other parasites, suggesting that these are generalist parasites, thriving in all cichlid species examined from Lake Victoria.


Assuntos
Ciclídeos , Doenças dos Peixes , Parasitos , Animais , Doenças dos Peixes/epidemiologia , Brânquias , Interações Hospedeiro-Parasita , Humanos , Lagos , Tanzânia
4.
J Evol Biol ; 33(5): 556-575, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32163649

RESUMO

Parasites may have strong eco-evolutionary interactions with their hosts. Consequently, they may contribute to host diversification. The radiation of cichlid fish in Lake Victoria provides a good model to study the role of parasites in the early stages of speciation. We investigated patterns of macroparasite infection in a community of 17 sympatric cichlids from a recent radiation and 2 older species from 2 nonradiating lineages, to explore the opportunity for parasite-mediated speciation. Host species had different parasite infection profiles, which were only partially explained by ecological factors (diet, water depth). This may indicate that differences in infection are not simply the result of differences in exposure, but that hosts evolved species-specific resistance, consistent with parasite-mediated divergent selection. Infection was similar between sampling years, indicating that the direction of parasite-mediated selection is stable through time. We morphologically identified 6 Cichlidogyrus species, a gill parasite that is considered a good candidate for driving parasite-mediated speciation, because it is host species-specific and has radiated elsewhere in Africa. Species composition of Cichlidogyrus infection was similar among the most closely related host species (members of the Lake Victoria radiation), but two more distantly related species (belonging to nonradiating sister lineages) showed distinct infection profiles. This is inconsistent with a role for Cichlidogyrus in the early stages of divergence. To conclude, we find significant interspecific variation in parasite infection profiles, which is temporally consistent. We found no evidence that Cichlidogyrus-mediated selection contributes to the early stages of speciation. Instead, our findings indicate that species differences in infection accumulate after speciation.


Assuntos
Ciclídeos/parasitologia , Especiação Genética , Especificidade de Hospedeiro , Seleção Genética , Trematódeos , Animais , Ciclídeos/genética , Copépodes , Ecossistema , Masculino , Tanzânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA