Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 35(1): 102157, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38450280

RESUMO

Cisplatin is a highly effective chemotherapeutic agent, but it can cause sensorineural hearing loss (SNHL) in patients. Cisplatin-induced ototoxicity is closely related to the accumulation of reactive oxygen species (ROS) and subsequent death of hair cells (HCs) and spiral ganglion neurons (SGNs). Despite various strategies to combat ototoxicity, only one therapeutic agent has thus far been clinically approved. Therefore, we have developed a gene therapy concept to protect cochlear cells from cisplatin-induced toxicity. Self-inactivating lentiviral (LV) vectors were used to ectopically express various antioxidant enzymes or anti-apoptotic proteins to enhance the cellular ROS scavenging or prevent apoptosis in affected cell types. In direct comparison, anti-apoptotic proteins mediated a stronger reduction in cytotoxicity than antioxidant enzymes. Importantly, overexpression of the most promising candidate, Bcl-xl, achieved an up to 2.5-fold reduction in cisplatin-induced cytotoxicity in HEI-OC1 cells, phoenix auditory neurons, and primary SGN cultures. BCL-XL protected against cisplatin-mediated tissue destruction in cochlear explants. Strikingly, in vivo application of the LV BCL-XL vector improved hearing and increased HC survival in cisplatin-treated mice. In conclusion, we have established a preclinical gene therapy approach to protect mice from cisplatin-induced ototoxicity that has the potential to be translated to clinical use in cancer patients.

2.
Audiol Neurootol ; 28(1): 43-51, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36075188

RESUMO

INTRODUCTION: Loss of hair cells and degeneration of spiral ganglion neurons (SGN) lead to severe hearing loss or deafness. The successful use of a cochlear implant (CI) depends among other factors on the number of surviving SGN. Postoperative formation of fibrous tissue around the electrode array causes an increase in electrical impedances at the stimulating contacts. The use of immunophilin inhibitors may reduce the inflammatory processes without suppressing the immune response. Here, we report on in vitro experiments with different concentrations of immunophilin inhibitors MM284 and compound V20 regarding a possible application of these substances in the inner ear. METHODS: Standard cell lines (NIH/3T3 fibroblasts), freshly isolated SGN, and fibroblasts from neonatal rat cochleae (p3-5) were incubated with different concentrations of immunophilin inhibitors for 48 h. Metabolic activity of fibroblasts was investigated by MTT assay and cell survival by counting of immunochemically stained neurons and compared to controls. RESULTS: MM284 did not affect SGN numbers and neurite growth at concentrations of 4 × 10-5 mol/L and below, whereas V20 had no effect at 8 × 10-6 mol/L and below. Metabolic activity of fibroblasts was unchanged at these concentrations. CONCLUSION: Especially MM284 might be considered as a possible candidate for application within the cochlea.


Assuntos
Implantes Cocleares , Gânglio Espiral da Cóclea , Ratos , Animais , Imunofilinas/farmacologia , Cóclea , Neurônios , Fibroblastos
3.
Molecules ; 27(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35209205

RESUMO

Cochlear implants, like other active implants, rely on precise and effective electrical stimulation of the target tissue but become encapsulated by different amounts of fibrous tissue. The current study aimed at the development of a dual drug release from a PLLA coating and from the bulk material to address short-term and long-lasting release of anti-inflammatory drugs. Inner-ear cytocompatibility of drugs was studied in vitro. A PLLA coating (containing diclofenac) of medical-grade silicone (containing 5% dexamethasone) was developed and release profiles were determined. The influence of different coating thicknesses (2.5, 5 and 10 µm) and loadings (10% and 20% diclofenac) on impedances of electrical contacts were measured with and without pulsatile electrical stimulation. Diclofenac can be applied to the inner ear at concentrations of or below 4 × 10-5 mol/L. Release of dexamethasone from the silicone is diminished by surface coating but not blocked. Addition of 20% diclofenac enhances the dexamethasone release again. All PLLA coatings serve as insulator. This can be overcome by using removable masking on the contacts during the coating process. Dual drug release with different kinetics can be realized by adding drug-loaded coatings to drug-loaded silicone arrays without compromising electrical stimulation.


Assuntos
Anti-Inflamatórios , Materiais Revestidos Biocompatíveis/química , Implantes Cocleares , Dexametasona , Diclofenaco , Sistemas de Liberação de Medicamentos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Dexametasona/química , Dexametasona/farmacocinética , Diclofenaco/química , Diclofenaco/farmacocinética , Liberação Controlada de Fármacos , Ratos , Ratos Sprague-Dawley
4.
PLoS One ; 16(7): e0254902, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34293032

RESUMO

Chronic infections are often connected to biofilm formation. In presence of implants, this can lead to loss of the implant. Systemic or local application of drugs is relatively ineffective in case of biofilm formation. One technique to provide antibacterial properties on demand is the antibacterial photodynamic therapy (aPDT). Using this technique, these properties can be "switched on" by light illumination. In the middle ear with the semitransparent tympanic membrane, it might be possible in future to activate the antibacterial effect without opening the membrane. Therefore, we investigated the optical absorbance spectra of the tympanic membrane. Optical absorbance spectra were measured in ex vivo preparations from neonatal and adult rats with the membrane still being attached to the surrounding bony ring and four human samples. After performing area scans, the spot with the lowest absorbance being surrounded by a ring like structure with higher absorbance was chosen as region of interest for scanning wavelengths between 300 and 900 nm. Absorbance is generally higher at lower wavelengths with a local absorbance maximum at 420 nm and a weak second maximum with two neighbouring peaks at 540 / 580 nm and is significantly higher in adult rats compared to neonatal rats where about 10% of light was transmitted. The human samples show similar characteristics with a little higher absorbance. For activation of aPDT through the tympanic membrane, larger wavelengths are more promising. Whether the amount of light transmitted through the membrane would be sufficient to induce aPDT remains to be tested in further experiments.


Assuntos
Luz , Membrana Timpânica/patologia , Animais , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Membrana Timpânica/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA