Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 90: 104506, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36889064

RESUMO

BACKGROUND: Proteinuria is associated with many glomerular diseases and a risk factor for the progression to renal failure. We previously showed that heparanase (HPSE) is essential for the development of proteinuria, whereas peroxisome proliferator-activated receptor É£ (PPARÉ£) agonists can ameliorate proteinuria. Since a recent study showed that PPARÉ£ regulates HPSE expression in liver cancer cells, we hypothesized that PPARÉ£ agonists exert their reno-protective effect by inhibiting glomerular HPSE expression. METHODS: Regulation of HPSE by PPARÉ£ was assessed in the adriamycin nephropathy rat model, and cultured glomerular endothelial cells and podocytes. Analyses included immunofluorescence staining, real-time PCR, heparanase activity assay and transendothelial albumin passage assay. Direct binding of PPARÉ£ to the HPSE promoter was evaluated by the luciferase reporter assay and chromatin immunoprecipitation assay. Furthermore, HPSE activity was assessed in 38 type 2 diabetes mellitus (T2DM) patients before and after 16/24 weeks treatment with the PPARÉ£ agonist pioglitazone. FINDINGS: Adriamycin-exposed rats developed proteinuria, an increased cortical HPSE and decreased heparan sulfate (HS) expression, which was ameliorated by treatment with pioglitazone. In line, the PPARÉ£ antagonist GW9662 increased cortical HPSE and decreased HS expression, accompanied with proteinuria in healthy rats, as previously shown. In vitro, GW9662 induced HPSE expression in both endothelial cells and podocytes, and increased transendothelial albumin passage in a HPSE-dependent manner. Pioglitazone normalized HPSE expression in adriamycin-injured human endothelial cells and mouse podocytes, and adriamycin-induced transendothelial albumin passage was reduced as well. Importantly, we demonstrated a regulatory effect of PPARÉ£ on HPSE promoter activity and direct PPARy binding to the HPSE promoter region. Plasma HPSE activity of T2DM patients treated with pioglitazone for 16/24 weeks was related to their hemoglobin A1c and showed a moderate, near significant correlation with plasma creatinine levels. INTERPRETATION: PPARÉ£-mediated regulation of HPSE expression appears an additional mechanism explaining the anti-proteinuric and renoprotective effects of thiazolidinediones in clinical practice. FUNDING: This study was financially supported by the Dutch Kidney Foundation, by grants 15OI36, 13OKS023 and 15OP13. Consortium grant LSHM16058-SGF (GLYCOTREAT; a collaboration project financed by the PPP allowance made available by Top Sector Life Sciences & Health to the Dutch Kidney Foundation to stimulate public-private partnerships).


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias , Tiazolidinedionas , Ratos , Camundongos , Humanos , Animais , Pioglitazona/farmacologia , Pioglitazona/uso terapêutico , PPAR gama , Diabetes Mellitus Tipo 2/complicações , Agonistas PPAR-gama , Células Endoteliais/metabolismo , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Proteinúria/tratamento farmacológico , Proteinúria/etiologia , Nefropatias/tratamento farmacológico , Doxorrubicina/efeitos adversos
2.
Int J Mol Sci ; 18(7)2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684664

RESUMO

Extracellular vesicles (EVs), such as exosomes and microvesicles, have been identified as mediators of a newly-discovered intercellular communication system. They are essential signaling mediators in various physiological and pathophysiological processes. Depending on their origin, they fulfill different functions. EVs of mesenchymal stem/stromal cells (MSCs) have been found to promote comparable therapeutic activities as MSCs themselves. In a variety of in vivo models, it has been observed that they suppress pro-inflammatory processes and reduce oxidative stress and fibrosis. By switching pro-inflammatory into tolerogenic immune responses, MSC-EVs very likely promote tissue regeneration by creating a pro-regenerative environment allowing endogenous stem and progenitor cells to successfully repair affected tissues. Accordingly, MSC-EVs provide a novel, very promising therapeutic agent, which has already been successfully applied to humans. However, the MSC-EV production process has not been standardized, yet. Indeed, a collection of different protocols has been used for the MSC-EV production, characterization and application. By focusing on kidney, heart, liver and brain injuries, we have reviewed the major outcomes of published MSC-EV in vivo studies.


Assuntos
Vesículas Extracelulares/imunologia , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Células-Tronco Mesenquimais/citologia , Animais , Vesículas Extracelulares/transplante , Humanos , Fatores Imunológicos/imunologia , Células-Tronco Mesenquimais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA