Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 163(11)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36124842

RESUMO

Laminin-α4 (LAMA4) is an extracellular matrix protein implicated in the regulation of adipocyte differentiation and function. Prior research describes a role for LAMA4 in modulating adipocyte thermogenesis and uncoupling protein-1 (UCP1) expression in white adipose; however, the mechanisms involved are poorly understood. Here, we describe that Lama4 knockout mice (Lama4-/-) exhibit heightened mitochondrial biogenesis and peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) expression in subcutaneous white adipose tissue (sWAT). Furthermore, the acute silencing of LAMA4 with small interfering RNA in primary murine adipocytes was sufficient to upregulate the expression of thermogenic markers UCP1 and PR domain containing 16 (PRDM16). Silencing also resulted in an upregulation of PGC1-α and adenosine 5'-monophosphate-activated protein kinase (AMPK)-α expression. Subsequently, we show that integrin-linked kinase (ILK) is downregulated in the sWAT of Lama4-/- mice, and its silencing in adipocytes similarly resulted in elevated expression of UCP1 and AMPKα. Last, we demonstrate that treatment of human induced pluripotent stem cell-derived thermogenic adipocytes with LAMA4 (LN411) inhibited the expression of thermogenic markers and AMPKα. Overall, our results indicate that LAMA4 negatively regulates a thermogenic phenotype and pathways involving mitochondrial biogenesis in adipocytes through the suppression of AMPKα.


Assuntos
Proteínas Quinases Ativadas por AMP , Células-Tronco Pluripotentes Induzidas , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adenosina/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Humanos , Laminina/genética , Laminina/metabolismo , Masculino , Camundongos , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Interferente Pequeno , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
2.
Front Endocrinol (Lausanne) ; 12: 698621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394003

RESUMO

Obesity affects nearly one billion globally and can lead to life-threatening sequelae. Consequently, there is an urgent need for novel therapeutics. We have previously shown that laminin, alpha 4 (Lama4) knockout in mice leads to resistance to adipose tissue accumulation; however, the relationship between LAMA4 and obesity in humans has not been established. In this study we measured laminin-α chain and collagen mRNA expression in the subcutaneous white adipose tissue (sWAT) of mice placed on chow (RCD) or 45% high fat diet (HFD) for 8 weeks, and also in HFD mice then placed on a "weight loss" regimen (8 weeks HFD followed by 6 weeks RCD). To assess extracellular matrix (ECM) components in humans with obesity, laminin subunit alpha mRNA and protein expression was measured in sWAT biopsies of female control subjects (BMI<30) or subjects with obesity undergoing bariatric surgery at the University of Chicago Medical Center (BMI>35) both before and three months after surgery. Lama4 was significantly higher in sWAT of HFD compared to RCD mice at both the RNA and protein level (p<0.001, p<0.05 respectively). sWAT from human subjects with obesity also showed significantly higher LAMA4 mRNA (p<0.01) and LAMA4 protein expression (p<0.05) than controls. Interestingly, even though LAMA4 expression was increased in both humans and murine models of obesity, no significant difference in Lama4 or LAMA4 expression was detected following short-term weight loss in either mouse or human samples, respectively. From these results we propose a significant association between obesity and elevated LAMA4 expression in humans, as well as in mouse models of obesity. Further studies should clarify the mechanisms underlying this association to target LAMA4 effectively as a potential therapy for obesity.


Assuntos
Laminina/genética , Obesidade/genética , Adulto , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/patologia , Regulação para Cima/genética , Adulto Jovem
3.
Metabolism ; 120: 154775, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33857525

RESUMO

Laminins are extracellular matrix proteins that reside in the basement membrane and provide structural support in addition to promoting cellular adhesion and migration. Through interactions with cell surface receptors, laminins stimulate intracellular signaling cascades which direct specific survival and differentiation outcomes. In metabolic tissues such as the pancreas, adipose, muscle, and liver, laminin isoforms are expressed in discrete temporal and spatial patterns suggesting that certain isoforms may support the development and function of particular metabolic cell types. This review focuses on the research to date detailing the expression of laminin isoforms, their potential function, as well as known pathways involved in laminin signaling in metabolic tissues. We will also discuss the current biomedical therapies involving laminins in these tissues in addition to prospective applications, with the goal being to encourage future investigation of laminins in the context of metabolic disease.


Assuntos
Metabolismo Energético/fisiologia , Laminina/fisiologia , Doenças Metabólicas/etiologia , Animais , Membrana Basal/metabolismo , Adesão Celular/fisiologia , Diferenciação Celular , Matriz Extracelular/metabolismo , Humanos , Doenças Metabólicas/metabolismo , Especificidade de Órgãos , Transdução de Sinais/fisiologia
4.
Sci Rep ; 11(1): 5442, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686208

RESUMO

Obesity and the metabolic disease epidemic has led to an increase in morbidity and mortality. A rise in adipose thermogenic capacity via activation of brown or beige fat is a potential treatment for metabolic diseases. However, an understanding of how local factors control adipocyte fate is limited. Mice with a null mutation in the laminin α4 (LAMA4) gene (KO) exhibit resistance to obesity and enhanced expression of thermogenic fat markers in white adipose tissue (WAT). In this study, changes in WAT extracellular matrix composition in the absence of LAMA4 were evaluated using liquid chromatography/tandem mass spectrometry. KO-mice showed lower levels of collagen 1A1 and 3A1, and integrins α7 (ITA7) and ß1 (ITB1). ITA7-ITB1 and collagen 1A1-3A1 protein levels were lower in brown adipose tissue compared to WAT in wild-type mice. Immunohistochemical staining confirmed lower levels and different spatial distribution of ITA7 in KO-WAT. In culture studies, ITA7 and LAMA4 levels decreased following a 12-day differentiation of adipose-derived stem cells into beige fat, and knock-down of ITA7 during differentiation increased beiging. These results demonstrate that extracellular matrix interactions regulate adipocyte thermogenic capacity and that ITA7 plays a role in beige adipose formation. A better understanding of the mechanisms underlying these interactions can be used to improve systemic energy metabolism and glucose homeostasis.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Integrinas/metabolismo , Termogênese , Animais , Proteínas da Matriz Extracelular/genética , Integrinas/genética , Camundongos , Camundongos Knockout
5.
Lab Chip ; 21(2): 435-446, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33351023

RESUMO

An accurate in vitro model of human adipose tissue could assist in the study of adipocyte function and allow for better tools for screening new therapeutic compounds. Cell culture models on two-dimensional surfaces fall short of mimicking the three-dimensional in vivo adipose environment, while three-dimensional culture models are often unable to support long-term cell culture due, in part, to insufficient mass transport. Microfluidic systems have been explored for adipose tissue models. However, current systems have primarily focused on 2D cultured adipocytes. In this work, a 3D human adipose microtissue was engineered within a microfluidic system. Human adipose-derived stem cells (ADSCs) were used as the cell source for generating differentiated adipocytes. The ADSCs differentiated within the microfluidic system formed a dense lipid-loaded mass with the expression of adipose tissue genetic markers. Engineered adipose tissue showed a decreased adiponectin secretion and increased free fatty acid secretion with increasing shear stress. Adipogenesis markers were downregulated with increasing shear stress. Overall, this microfluidic system enables the on-chip differentiation and development of a functional 3D human adipose microtissue supported by the interstitial flow. This system could potentially serve as a platform for in vitro drug testing for adipose tissue-related diseases.


Assuntos
Tecido Adiposo , Dispositivos Lab-On-A-Chip , Adipócitos , Adipogenia , Diferenciação Celular , Células Cultivadas , Humanos
6.
Endocrinology ; 161(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32770234

RESUMO

The Silencing Mediator of Retinoid and Thyroid Hormone Receptors (SMRT) is a nuclear corepressor, regulating the transcriptional activity of many transcription factors critical for metabolic processes. While the importance of the role of SMRT in the adipocyte has been well-established, our comprehensive understanding of its in vivo function in the context of homeostatic maintenance is limited due to contradictory phenotypes yielded by prior generalized knockout mouse models. Multiple such models agree that SMRT deficiency leads to increased adiposity, although the effects of SMRT loss on glucose tolerance and insulin sensitivity have been variable. We therefore generated an adipocyte-specific SMRT knockout (adSMRT-/-) mouse to more clearly define the metabolic contributions of SMRT. In doing so, we found that SMRT deletion in the adipocyte does not cause obesity-even when mice are challenged with a high-fat diet. This suggests that adiposity phenotypes of previously described models were due to effects of SMRT loss beyond the adipocyte. However, an adipocyte-specific SMRT deficiency still led to dramatic effects on systemic glucose tolerance and adipocyte insulin sensitivity, impairing both. This metabolically deleterious outcome was coupled with a surprising immune phenotype, wherein most genes differentially expressed in the adipose tissue of adSMRT-/- mice were upregulated in pro-inflammatory pathways. Flow cytometry and conditioned media experiments demonstrated that secreted factors from knockout adipose tissue strongly informed resident macrophages to develop a pro-inflammatory, MMe (metabolically activated) phenotype. Together, these studies suggest a novel role for SMRT as an integrator of metabolic and inflammatory signals to maintain physiological homeostasis.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular/genética , Metabolismo Energético/genética , Macrófagos/fisiologia , Correpressor 2 de Receptor Nuclear/fisiologia , Adipócitos/fisiologia , Tecido Adiposo/citologia , Animais , Homeostase/genética , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Correpressor 2 de Receptor Nuclear/genética , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Especificidade de Órgãos/genética , Fenótipo
7.
Cell Rep ; 27(5): 1345-1355.e6, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31042463

RESUMO

Amyloid precursor protein (APP) and its metabolites play key roles in Alzheimer's disease (AD) pathophysiology. Whereas short amyloid-ß (Aß) peptides derived from APP are pathogenic, the APP holoprotein serves multiple purposes in the nervous system through its cell adhesion and receptor-like properties. Our studies focused on the signaling mediated by the APP cytoplasmic tail. We investigated whether sustained APP signaling during brain development might favor neuronal plasticity and memory process through a direct interaction with the heterotrimeric G-protein subunit GαS (stimulatory G-protein alpha subunit). Our results reveal that APP possesses autonomous regulatory capacity within its intracellular domain that promotes APP cell surface residence, precludes Aß production, facilitates axodendritic development, and preserves cellular substrates of memory. Altogether, these events contribute to strengthening cognitive functions and are sufficient to modify the course of AD pathology.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Memória , Neurogênese , Transdução de Sinais , Precursor de Proteína beta-Amiloide/química , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Células Cultivadas , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Domínios Proteicos
8.
Endocrinology ; 159(1): 356-367, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973559

RESUMO

Laminin α4 (LAMA4) is located in the extracellular basement membrane that surrounds each individual adipocyte. Here we show that LAMA4 null (Lama4-/-) mice exhibit significantly higher energy expenditure (EE) relative to wild-type (WT) mice at room temperature and when exposed to a cold challenge, despite similar levels of food intake and locomotor activity. The Lama4-/- mice are resistant to age- and diet-induced obesity. Expression of uncoupling protein 1 is higher in subcutaneous white adipose tissue of Lama4-/- mice relative to WT animals on either a chow diet or a high-fat diet. In contrast, uncoupling protein 1 expression was not increased in brown adipose tissue. Lama4-/- mice exhibit significantly improved insulin sensitivity compared with WT mice, suggesting improved metabolic function. Overall, these data provide critical evidence for a role of the basement membrane in EE, weight gain, and systemic insulin sensitivity.


Assuntos
Tecido Adiposo Bege/metabolismo , Adiposidade , Metabolismo Energético , Resistência à Insulina , Laminina/metabolismo , Obesidade/metabolismo , Gordura Subcutânea/metabolismo , Tecido Adiposo Bege/patologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/patologia , Animais , Membrana Basal/metabolismo , Membrana Basal/patologia , Células Cultivadas , Temperatura Baixa/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Ingestão de Energia , Regulação da Expressão Gênica no Desenvolvimento , Laminina/genética , Masculino , Camundongos Knockout , Obesidade/etiologia , Obesidade/patologia , Especificidade de Órgãos , Estresse Fisiológico , Gordura Subcutânea/patologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Aumento de Peso
9.
Elife ; 52016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27196744

RESUMO

Presenilin 1 (PS1) is an essential γ-secretase component, the enzyme responsible for amyloid precursor protein (APP) intramembraneous cleavage. Mutations in PS1 lead to dominant-inheritance of early-onset familial Alzheimer's disease (FAD). Although expression of FAD-linked PS1 mutations enhances toxic Aß production, the importance of other APP metabolites and γ-secretase substrates in the etiology of the disease has not been confirmed. We report that neurons expressing FAD-linked PS1 variants or functionally deficient PS1 exhibit enhanced axodendritic outgrowth due to increased levels of APP intracellular C-terminal fragment (APP-CTF). APP expression is required for exuberant neurite outgrowth and hippocampal axonal sprouting observed in knock-in mice expressing FAD-linked PS1 mutation. APP-CTF accumulation initiates CREB signaling cascade through an association of APP-CTF with Gαs protein. We demonstrate that pathological PS1 loss-of-function impinges on neurite formation through a selective APP gain-of-function that could impact on axodendritic connectivity and contribute to aberrant axonal sprouting observed in AD patients.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Neurônios/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Animais , Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA