Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5496, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448499

RESUMO

The Malagasy Summer Monsoon is an important part of the larger Indian Ocean and tropical monsoon region. As the effects of global warming play out, changes to precipitation in Madagascar will have important ramifications for the Malagasy people. To help understand how precipitation responds to climate changes we present a long-term Holocene speleothem record from Anjohibe, part of the Andranoboka cave system in northwestern Madagascar. To date, it is the most complete Holocene record from this region and sheds light on the nature of millennial and centennial precipitation changes in this region. We find that over the Holocene, precipitation in northwestern Madagascar is actually in phase with the Northern Hemisphere Asian monsoon on multi-millennial scales, but that during some shorter centennial-scale events such as the 8.2 ka event, Anjohibe exhibits an antiphase precipitation signal to the Northern Hemisphere. The ultimate driver of precipitation changes across the Holocene does not appear to be the meridional migration of the monsoon. Instead, zonal sea surface temperature gradients in the Indian Ocean seem to play a primary role in precipitation changes in northwestern Madagascar.

2.
J Hum Evol ; 189: 103515, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38422880
3.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34162703

RESUMO

No endemic Madagascar animal with body mass >10 kg survived a relatively recent wave of extinction on the island. From morphological and isotopic analyses of skeletal "subfossil" remains we can reconstruct some of the biology and behavioral ecology of giant lemurs (primates; up to ∼160 kg) and other extraordinary Malagasy megafauna that survived into the past millennium. Yet, much about the evolutionary biology of these now-extinct species remains unknown, along with persistent phylogenetic uncertainty in some cases. Thankfully, despite the challenges of DNA preservation in tropical and subtropical environments, technical advances have enabled the recovery of ancient DNA from some Malagasy subfossil specimens. Here, we present a nuclear genome sequence (∼2× coverage) for one of the largest extinct lemurs, the koala lemur Megaladapis edwardsi (∼85 kg). To support the testing of key phylogenetic and evolutionary hypotheses, we also generated high-coverage nuclear genomes for two extant lemurs, Eulemur rufifrons and Lepilemur mustelinus, and we aligned these sequences with previously published genomes for three other extant lemurs and 47 nonlemur vertebrates. Our phylogenetic results confirm that Megaladapis is most closely related to the extant Lemuridae (typified in our analysis by E. rufifrons) to the exclusion of L. mustelinus, which contradicts morphology-based phylogenies. Our evolutionary analyses identified significant convergent evolution between M. edwardsi and an extant folivore (a colobine monkey) and an herbivore (horse) in genes encoding proteins that function in plant toxin biodegradation and nutrient absorption. These results suggest that koala lemurs were highly adapted to a leaf-based diet, which may also explain their convergent craniodental morphology with the small-bodied folivore Lepilemur.


Assuntos
Núcleo Celular/genética , Extinção Biológica , Genoma , Lemur/genética , Filogenia , Aminoácidos/genética , Animais , Sequência de Bases , Evolução Molecular , Genômica , Herbivoria/fisiologia
5.
BMC Evol Biol ; 20(1): 97, 2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32770933

RESUMO

BACKGROUND: Was there a mid-Cenozoic vertebrate extinction and recovery event in Madagascar and, if so, what are its implications for the evolution of lemurs? The near lack of an early and mid-Cenozoic fossil record on Madagascar has inhibited direct testing of any such hypotheses. We compare the terrestrial vertebrate fauna of Madagascar in the Holocene to that of early Cenozoic continental Africa to shed light on the probability of a major mid-Cenozoic lemur extinction event, followed by an "adaptive radiation" or recovery. We also use multiple analytic approaches to test competing models of lemur diversification and the null hypothesis that no unusual mid-Cenozoic extinction of lemurs occurred. RESULTS: Comparisons of the terrestrial vertebrate faunas of the early Cenozoic on continental Africa and Holocene on Madagascar support the inference that Madagascar suffered a major mid-Cenozoic extinction event. Evolutionary modeling offers some corroboration, although the level of support varies by phylogeny and model used. Using the lemur phylogeny and divergence dates generated by Kistler and colleagues, RPANDA and TESS offer moderate support for the occurrence of unusual extinction at or near the Eocene-Oligocene (E-O) boundary (34 Ma). TreePar, operating under the condition of obligate mass extinction, found peak diversification at 31 Ma, and low probability of survival of prior lineages. Extinction at the E-O boundary received greater support than other candidate extinctions or the null hypothesis of no major extinction. Using the lemur phylogeny and divergence dates generated by Herrera & Dàvalos, evidence for large-scale extinction diminishes and its most likely timing shifts to before 40 Ma, which fails to conform to global expectations. CONCLUSIONS: While support for large-scale mid-Cenozoic lemur extinction on Madagascar based on phylogenetic modeling is inconclusive, the African fossil record does provide indirect support. Furthermore, a major extinction and recovery of lemuriforms during the Eocene-Oligocene transition (EOT) would coincide with other major vertebrate extinctions in North America, Europe, and Africa. It would suggest that Madagascar's lemurs were impacted by the climate shift from "greenhouse" to "ice-house" conditions that occurred at that time. This could, in turn, help to explain some of the peculiar characteristics of the lemuriform clade.


Assuntos
Evolução Biológica , Mudança Climática , Extinção Biológica , Fósseis , Lemur/classificação , Animais , Madagáscar , Filogenia
6.
Sci Rep ; 9(1): 8776, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217457

RESUMO

Anthropogenic habitat change can have varied impacts on primates, including both negative and positive outcomes. Even when behavioural shifts are seen, they may reflect decreased health, or simply behavioural flexibility; understanding this distinction is important for conservation efforts. This study examines habitat-related variation in adult and immature morphometrics among diademed sifakas (Propithecus diadema). We collected morphometric data from sifakas at Tsinjoarivo, Madagascar (19 years, 188 captures, 113 individuals). Captures spanned 12 groups, five within continuous forest ("CONT"), and seven in degraded fragments ("FRAG") where sifakas have lower nutritional intakes. Few consistent differences were found between CONT and FRAG groups. However, using home range quality as a covariate rather than a CONT/FRAG dichotomy revealed a threshold: the two FRAG groups in the lowest-quality habitat showed low adult mass and condition (wasting), and low immature mass and length (stunting). Though less-disturbed fragments apparently provide viable habitat, we suggest the sifakas in the most challenging habitats cannot evolve fast enough to keep up with such rapid habitat change. We suggest other long-lived organisms will show similar morphometric "warning signs" (wasting in adults, stunting in immatures); selected morphometric variables can thus be useful at gauging vulnerability of populations in the face of anthropogenic change.


Assuntos
Indriidae , Floresta Úmida , Animais , Feminino , Indriidae/anatomia & histologia , Indriidae/fisiologia , Masculino , Dinâmica Populacional
7.
J Hum Evol ; 130: 126-140, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31010539

RESUMO

Fundamental disagreements remain regarding the relative importance of climate change and human activities as triggers for Madagascar's Holocene megafaunal extinction. We use stable isotope data from stalagmites from northwest Madagascar coupled with radiocarbon and butchery records from subfossil bones across the island to investigate relationships between megafaunal decline, climate change, and habitat modification. Archaeological and genetic evidence support human presence by 2000 years Before Common Era (BCE). Megafaunal decline was at first slow; it hastened at ∼700 Common Era (CE) and peaked between 750 and 850 CE, just before a dramatic vegetation transformation in the northwest that resulted in the replacement of C3 woodland habitat with C4 grasslands, during a period of heightened monsoonal activity. Cut and chop marks on subfossil lemur bones reveal a shift in primary hunting targets from larger, now-extinct species prior to ∼900 CE, to smaller, still-extant species afterwards. By 1050 CE, megafaunal populations had essentially collapsed. Neither the rapid megafaunal decline beginning ∼700 CE, nor the dramatic vegetation transformation in the northwest beginning ∼890 CE, was influenced by aridification. However, both roughly coincide with a major transition in human subsistence on the island from hunting/foraging to herding/farming. We offer a new hypothesis, which we call the "Subsistence Shift Hypothesis," to explain megafaunal decline and extinction in Madagascar. This hypothesis acknowledges the importance of wild-animal hunting by early hunter/foragers, but more critically highlights negative impacts of the shift from hunting/foraging to herding/farming, settlement by new immigrant groups, and the concomitant expansion of the island's human population. The interval between 700 and 900 CE, when the pace of megafaunal decline quickened and peaked, coincided with this economic transition. While early megafaunal decline through hunting may have helped to trigger the transition, there is strong evidence that the economic shift itself hastened the crash of megafaunal populations.


Assuntos
Agricultura , Extinção Biológica , Mamíferos , Paleógnatas , Animais , Arqueologia , Biodiversidade , Ecossistema , Humanos , Madagáscar
8.
Sci Adv ; 4(9): eaat6925, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30214938

RESUMO

Previous research suggests that people first arrived on Madagascar by ~2500 years before present (years B.P.). This hypothesis is consistent with butchery marks on extinct lemur bones from ~2400 years B.P. and perhaps with archaeological evidence of human presence from ~4000 years B.P. We report >10,500-year-old human-modified bones for the extinct elephant birds Aepyornis and Mullerornis, which show perimortem chop marks, cut marks, and depression fractures consistent with immobilization and dismemberment. Our evidence for anthropogenic perimortem modification of directly dated bones represents the earliest indication of humans in Madagascar, predating all other archaeological and genetic evidence by >6000 years and changing our understanding of the history of human colonization of Madagascar. This revision of Madagascar's prehistory suggests prolonged human-faunal coexistence with limited biodiversity loss.


Assuntos
Aves , Fósseis , Animais , Arqueologia , Aves/anatomia & histologia , História Antiga , Humanos , Madagáscar
9.
Am J Primatol ; 79(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28605033

RESUMO

The reddish-gray mouse lemur (Microcebus griseorufus) possesses striking phenotypic and behavioral variation. This project investigates differences in autopod proportions in neighboring populations of M. griseorufus from the Special Reserve at Bezà Mahafaly in southwest Madagascar. One population resides in an environment generally preferred by M. griseorufus-a spiny forest with large-trunked trees, vertically-oriented supports, and more open ground, while the other resides in a gallery forest with abundant small, often horizontal peripheral branches in high canopy. We demonstrate significant interpopulation differences in autopod morphophology despite no evidence of divergence in mitochondrial cytochrome b. We test two hypotheses regarding ultimate causation. The first, based on the Fine Branch Arborealism Hypothesis (FBAH), holds that autopod differences are related to different locomotor practices in the two environments, and the second, based on the Narrow Niche Hypothesis (NNH), holds that the observed differences reflect a relaxation (from ancestral to descendant conditions) of selective pressure for terrestrial locomotion and/or use of large, vertical supports combined with positive selection for locomoting in peripheral branch settings. Our data conform well to FBAH expectations and show some support for the NNH. Individuals from the gallery forest possess disproportionally long posterior digits that facilitate locomotion on small, flexible canopy supports while individuals from the spiny forest possess shorter posterior digits and a longer pollex/hallux that increase functional grasping diameter for large vertical supports and facilitate efficient ground locomotion. Focal individual data confirm differences in how often individuals descend to the ground and use vertical supports. We further show that predispersal juveniles, like adults, possess autopod morphologies suited to their natal forest. We explore two proximate mechanisms that could generate these cheiridial differences. The first posits an in vivo plastic response to different locomotor behaviors, the second posits differences that manifest in early development.


Assuntos
Pé/anatomia & histologia , Mãos/anatomia & histologia , Lemur , Animais , Cheirogaleidae , Florestas , Madagáscar , Árvores
11.
Am J Primatol ; 78(10): 1098-112, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26613562

RESUMO

Over 40 years ago, Clifford Jolly noted different ways in which Hadropithecus stenognathus converged in its craniodental anatomy with basal hominins and with geladas. The Malagasy subfossil lemur Hadropithecus departs from its sister taxon, Archaeolemur, in that it displays comparatively large molars, reduced incisors and canines, a shortened rostrum, and thickened mandibular corpus. Its molars, however, look nothing like those of basal hominins; rather, they much more closely resemble molars of grazers such as Theropithecus. A number of tools have been used to interpret these traits, including dental microwear and texture analysis, molar internal and external morphology, and finite element analysis of crania. These tools, however, have failed to provide support for a simple dietary interpretation; whereas there is some consistency in the inferences they support, dietary inferences (e.g., that it was graminivorous, or that it specialized on hard objects) have been downright contradictory. Cranial shape may correlate poorly with diet. But a fundamental question remains unresolved: why do the various cranial and dental convergences exemplified by Hadropithecus, basal hominins, and Theropithecus exist? In this paper we review prior hypotheses regarding the diet of Hadropithecus. We then use stable carbon and nitrogen isotope data to elucidate this species' diet, summarizing earlier stable isotope analyses and presenting new data for lemurs from the central highlands of Madagascar, where Hadropithecus exhibits an isotopic signature strikingly different from that seen in other parts of the island. We offer a dietary explanation for these differences. Hadropithecus likely specialized neither on grasses nor hard objects; its staples were probably the succulent leaves of CAM plants. Nevertheless, aspects of prior hypotheses regarding the ecological significance of its morphology can be supported. Am. J. Primatol. 78:1098-1112, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Isótopos de Carbono , Dieta , Fósseis , Isótopos de Nitrogênio , Strepsirhini , Animais , Feminino , Hominidae , Lemur , Madagáscar
12.
PLoS One ; 10(8): e0134210, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26267241

RESUMO

Skeletal histology supports the hypothesis that primate life histories are regulated by a neuroendocrine rhythm, the Havers-Halberg Oscillation (HHO). Interestingly, subfossil lemurs are outliers in HHO scaling relationships that have been discovered for haplorhine primates and other mammals. We present new data to determine whether these species represent the general lemur or strepsirrhine condition and to inform models about neuroendocrine-mediated life history evolution. We gathered the largest sample to date of HHO data from histological sections of primate teeth (including the subfossil lemurs) to assess the relationship of these chronobiological measures with life history-related variables including body mass, brain size, age at first female reproduction, and activity level. For anthropoids, these variables show strong correlations with HHO conforming to predictions, though body mass and endocranial volume are strongly correlated with HHO periodicity in this group. However, lemurs (possibly excepting Daubentonia) do not follow this pattern and show markedly less variability in HHO periodicity and lower correlation coefficients and slopes. Moreover, body mass is uncorrelated, and brain size and activity levels are more strongly correlated with HHO periodicity in these animals. We argue that lemurs evolved this pattern due to selection for risk-averse life histories driven by the unpredictability of the environment in Madagascar. These results reinforce the idea that HHO influences life history evolution differently in response to specific ecological selection regimes.


Assuntos
Evolução Biológica , Lemur/fisiologia , Animais , Lemur/anatomia & histologia , Modelos Estatísticos
13.
Am J Primatol ; 77(9): 936-947, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26031477

RESUMO

Small-bodied, nocturnal mouse lemurs (Microcebus) are widespread across diverse forest habitats in Madagascar. They are strict seasonal breeders and can, depending on the habitat and species, undergo daily or prolonged torpor to minimize energy expenditure during periods of food and water scarcity. Duration of reproduction, number of litters per season and timing of births vary across individuals and species. The "polyestry-seasonality" hypothesis proposes that the duration of reproduction and number of litters per year are positively correlated with rainfall but negatively correlated with longevity, whereas the "hypervariability" hypothesis suggests that the duration of reproduction is negatively correlated with the degree of predictability of food resources. We test these hypotheses in two mouse lemur species inhabiting contrasting habitats, the brown mouse lemurs, Microcebus rufus, from Ranomafana (a less seasonal and more climatically predictable habitat) and the gray-brown mouse lemurs, M. griseorufus, from Beza Mahafaly (a more seasonal and less climatically predictable environment). We use capture/mark/recapture techniques and records of female reproductive status. We found evidence of polyestry at both study sites but faster population turnover and longer duration of the reproductive season at Beza Mahafaly. The "polyestry-seasonality" hypothesis is not supported but the "hypervariability" hypothesis could not be rejected. We conclude that reproductive output cannot be tied to climatic factors in a simple manner. Paradoxically, polyestry can be expressed in contrasting habitats: less seasonal forests where females can sustain multiple reproductive events, but also highly seasonal environments where females may not fatten sufficiently to sustain prolonged torpor but instead remain active throughout the year by relying on fallback resources. Am. J. Primatol. 77:936-947, 2015. © 2015 Wiley Periodicals, Inc.

15.
J Hum Evol ; 79: 45-54, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25523037

RESUMO

Humans first arrived on Madagascar only a few thousand years ago. Subsequent habitat destruction and hunting activities have had significant impacts on the island's biodiversity, including the extinction of megafauna. For example, we know of 17 recently extinct 'subfossil' lemur species, all of which were substantially larger (body mass ∼11-160 kg) than any living population of the ∼100 extant lemur species (largest body mass ∼6.8 kg). We used ancient DNA and genomic methods to study subfossil lemur extinction biology and update our understanding of extant lemur conservation risk factors by i) reconstructing a comprehensive phylogeny of extinct and extant lemurs, and ii) testing whether low genetic diversity is associated with body size and extinction risk. We recovered complete or near-complete mitochondrial genomes from five subfossil lemur taxa, and generated sequence data from population samples of two extinct and eight extant lemur species. Phylogenetic comparisons resolved prior taxonomic uncertainties and confirmed that the extinct subfossil species did not comprise a single clade. Genetic diversity estimates for the two sampled extinct species were relatively low, suggesting small historical population sizes. Low genetic diversity and small population sizes are both risk factors that would have rendered giant lemurs especially susceptible to extinction. Surprisingly, among the extant lemurs, we did not observe a relationship between body size and genetic diversity. The decoupling of these variables suggests that risk factors other than body size may have as much or more meaning for establishing future lemur conservation priorities.


Assuntos
Tamanho Corporal , Extinção Biológica , Genômica/métodos , Lemur , Paleontologia/métodos , Animais , Tamanho Corporal/genética , Tamanho Corporal/fisiologia , DNA/análise , DNA/genética , Fósseis , Lemur/classificação , Lemur/genética , Lemur/fisiologia , Madagáscar , Filogenia
16.
Int J Parasitol Parasites Wildl ; 4(3): 408-13, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26767168

RESUMO

At Bezà Mahafaly Special Reserve (BMSR), Madagascar, mouse lemurs (Microcebus griseorufus) are parasitized by multiple species of haemaphysaline ticks. At present we know little about the role ticks play in wild lemur populations and how they can alter interspecies relationships within communities or impact host fitness. In order to better understand these dynamics at BMSR, we examined parasite-host interactions as well as the ecology of mouse lemurs and their infesting ticks, Haemaphysalis lemuris and H. sp. cf. simplex. We show that season, host sex, and habitat influence the relative abundance of ticks on mouse lemurs. Specifically, infestations occur only during the dry season (May-October), are higher in males, and are higher at the study site with the most ground cover and with greater density of large-bodied hosts. Microcebus likely experience decreased susceptibility to tick infestations during the wet season because at that time they rarely if ever descend to the ground. Similarly, male mouse lemurs have higher infestation rates than females because of the greater time they spend traveling and foraging on the ground. During the dry season, Microcebus likely serve as hosts for the tenrec tick, H. sp. cf. simplex, when tenrecs hibernate. In turn, during the wet season when mouse lemurs rarely descend to the ground, other small mammals at the reserve may serve as maintenance hosts for populations of immature ticks. The synchronous development of larvae and nymphs could present high risk for vector-borne disease in Microcebus. This study also provides a preliminary description of the ecology and life cycle of the most common lemur tick, H. lemuris.

17.
J R Soc Interface ; 11(101): 20140965, 2014 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-25320068

RESUMO

Teeth are often assumed to be optimal for their function, which allows researchers to derive dietary signatures from tooth shape. Most tooth shape analyses normalize for tooth size, potentially masking the relationship between relative food item size and tooth shape. Here, we model how relative food item size may affect optimal tooth cusp radius of curvature (RoC) during the fracture of brittle food items using a parametric finite-element (FE) model of a four-cusped molar. Morphospaces were created for four different food item sizes by altering cusp RoCs to determine whether optimal tooth shape changed as food item size changed. The morphospaces were also used to investigate whether variation in efficiency metrics (i.e. stresses, energy and optimality) changed as food item size changed. We found that optimal tooth shape changed as food item size changed, but that all optimal morphologies were similar, with one dull cusp that promoted high stresses in the food item and three cusps that acted to stabilize the food item. There were also positive relationships between food item size and the coefficients of variation for stresses in food item and optimality, and negative relationships between food item size and the coefficients of variation for stresses in the enamel and strain energy absorbed by the food item. These results suggest that relative food item size may play a role in selecting for optimal tooth shape, and the magnitude of these selective forces may change depending on food item size and which efficiency metric is being selected.


Assuntos
Alimentos , Modelos Biológicos , Dente/anatomia & histologia , Dente/fisiologia , Vibração , Animais , Análise de Elementos Finitos , Humanos , Estresse Mecânico
18.
Am J Phys Anthropol ; 155(1): 77-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24898417

RESUMO

We examine the ecology of reddish-gray mouse lemurs from three habitats at Beza Mahafaly Special Reserve using focal follows and stable carbon and nitrogen isotope data. Focal observations indicate dietary differences among habitats as well as sexes and seasons. Both sexes consume more arthropods during the rainy season but overall, females consume more sugar-rich exudates and fruit than males, and individuals from riparian forest consume fewer arthropods and more fruit than those in xeric or dry forest. We ask whether these observations are isotopically detectable. Isotope data support differences between seasons and sexes. Nitrogen isotope values are higher during the rainy season when lemurs consume more arthropods, and higher in males than females, particularly during the dry season. However, differences among populations inferred from focal observations are not fully supported. Lemurs from riparian forest have lower isotope values than those in xeric scrub, but isotope data suggest that lemurs from the dry forest eat the least animal matter and that focal observations overestimated dry forest arthropod consumption. Overall, our results suggest that observational and isotopic data are complementary. Isotope data can be obtained from a larger number of individuals and can quantify ingestion of animal matter, but they apparently cannot quantify the relative consumption of different sugar-rich foods. Combined focal and isotope data provide valuable insight into the dietary constraints of reddish-grey mouse lemurs, with implications for their vulnerability to future habitat change.


Assuntos
Isótopos de Carbono/análise , Cheirogaleidae/fisiologia , Dieta , Isótopos de Nitrogênio/análise , Animais , Ecossistema , Comportamento Alimentar , Feminino , Madagáscar , Masculino , Plantas/química
19.
J R Soc Interface ; 10(84): 20130240, 2013 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-23635495

RESUMO

Tooth cusp sharpness, measured by radius of curvature (RoC), has been predicted to play a significant role in brittle/hard food item fracture. Here, we set out to test three existing hypotheses about this relationship: namely, the Blunt and Strong Cusp hypotheses, which predict that dull cusps will be most efficient at brittle food item fracture, and the Pointed Cusp hypothesis, which predicts that sharp cusps will be most efficient at brittle food item fracture using a four cusp bunodont molar. We also put forth and test the newly constructed Complex Cusp hypothesis, which predicts that a mixture of dull and sharp cusps will be most efficient at brittle food item fracture. We tested the four hypotheses using finite-element models of four cusped, bunodont molars. When testing the three existing hypotheses, we assumed all cusps had the same level of sharpness (RoC), and gained partial support for the Blunt Cusp hypotheses. We found no support for the Pointed Cusp or Strong Cusp hypotheses. We used the Taguchi sampling method to test the Complex Cusps hypothesis with a morphospace created by independently varying the radii of curvature of the four cusps in the buccolingual and mesiodistal directions. The optimal occlusal morphology for fracturing brittle food items consists of a combination of sharp and dull cusps, which creates high stress concentrations in the food item while stabilizing the food item and keeping the stress concentrations in the enamel low. This model performed better than the Blunt Cusp hypothesis, suggesting a role for optimality in the evolution of cusp form.


Assuntos
Oclusão Dentária , Mastigação/fisiologia , Modelos Biológicos , Coroa do Dente/anatomia & histologia , Fenômenos Biomecânicos , Módulo de Elasticidade , Análise de Elementos Finitos , Humanos , Estresse Mecânico , Resistência à Tração
20.
PLoS One ; 8(4): e62086, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23626770

RESUMO

Analyses of phylogenetic topology and estimates of divergence timing have facilitated a reconstruction of Madagascar's colonization events by vertebrate animals, but that information alone does not reveal the major factors shaping the island's biogeographic history. Here, we examine profiles of Malagasy vertebrate clades through time within the context of the island's paleogeographical evolution to determine how particular events influenced the arrival of the island's extant groups. First we compare vertebrate profiles on Madagascar before and after selected events; then we compare tetrapod profiles on Madagascar to contemporary tetrapod compositions globally. We show that changes from the Mesozoic to the Cenozoic in the proportions of Madagascar's tetrapod clades (particularly its increase in the representation of birds and mammals) are tied to changes in their relative proportions elsewhere on the globe. Differences in the representation of vertebrate classes from the Mesozoic to the Cenozoic reflect the effects of extinction (i.e., the non-random susceptibility of the different vertebrate clades to purported catastrophic global events 65 million years ago), and new evolutionary opportunities for a subset of vertebrates with the relatively high potential for transoceanic dispersal potential. In comparison, changes in vertebrate class representation during the Cenozoic are minor. Despite the fact that the island's isolation has resulted in high vertebrate endemism and a unique and taxonomically imbalanced extant vertebrate assemblage (both hailed as testimony to its long isolation), that isolation was never complete. Indeed, Madagascar's extant tetrapod fauna owes more to colonization during the Cenozoic than to earlier arrivals. Madagascar's unusual vertebrate assemblage needs to be understood with reference to the basal character of clades originating prior to the K-T extinction, as well as to the differential transoceanic dispersal advantage of other, more recently arriving clades. Thus, the composition of Madagascar's endemic vertebrate assemblage itself provides evidence of the island's paleogeographic history.


Assuntos
Vertebrados/classificação , Animais , Evolução Biológica , Ciências da Terra , Meio Ambiente , Geografia , Madagáscar , Filogenia , Vertebrados/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA