Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36611626

RESUMO

This study evaluated the potential of Cimicifuga racemosa (L.) Nutt extract (CIMI) to reduce the deleterious effects of doxorubicin (DOXO) in oocytes, follicles and stromal cells in mice ovaries cultured in vitro. In experiment 1, mice ovaries were cultured in DMEM+ alone or supplemented with 5, 50 or 500 ng/mL CIMI, while in experiment 2, mice ovaries were cultured in DMEM+ alone or supplemented with 5 ng/mL CIMI (better concentration), 0.3 µg/mL DOXO or both. Thereafter, the ovaries were processed for histological (morphology, growth, activation, extracellular matrix configuration and stromal cell density), immunohistochemical (caspase-3) analyses. Follicle viability was evaluated by fluorescence microscopy (ethidium homodimer-1 and calcein) while real-time PCR was performed to analyses the levels of (mRNA for SOD, CAT and nuclear factor erythroid 2-related factor 2 (NRF2) analyses. The results showed that DOXO reduces the percentage of normal follicles and the density of stromal cells in cultured ovaries, but these harmful effects were blocked by CIMI. The DOXO reduced the percentage of primordial follicles, while the presence of CIMI alone did not influence percentage of primordial follicles. A higher staining for caspase-3 was seen in ovaries cultured in control medium alone or with DOXO when compared with those cultured with CIMI alone or both CIMI and DOXO. In addition, follicles from ovaries cultured with both CIMI and DOXO were stained by calcein, while those follicles cultured with only DOXO were stained with ethidium homodimer-1. Furthermore, ovaries cultured with CIMI or both CIMI and DOXO had higher levels of mRNA for SOD and CAT, respectively, than those cultured with only DOXO. In conclusion, the extract of CIMI protects the ovaries against deleterious effects of DOXO on follicular survival and ovarian stromal cells.

2.
Biochim Biophys Acta Gen Subj ; 1861(8): 1943-1950, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28506883

RESUMO

Cardiotonic steroids (CS) are known as modulators of sodium and water homeostasis. These compounds contribute to the excretion of sodium under overload conditions due to its natriuretic property related to the inhibition of the renal Na+/K+-ATPase (NKA) pump α1 isoform. NHE3, the main route for Na+ reabsorption in the proximal tubule, depends on the Na+ gradient generated by the NKA pump. In the present study we aimed to investigate the effects of marinobufagin (MBG) and telocinobufagin (TBG) on the renal function of isolated perfused rat kidney and on the inhibition of NKA activity. Furthermore, we investigated the mechanisms for the cardiotonic steroid-mediated natriuretic effect, by evaluating and comparing the effects of bufalin (BUF), ouabain (OUA), MBG and TBG on NHE3 activity in the renal proximal tubule in vivo. TBG significantly increased GFR, UF, natriuresis and kaliuresis in isolated perfused rat kidney, and inhibits the activity of NKA at a much higher rate than MBG. By stationary microperfusion technique, the perfusion with BUF, OUA, TBG or MBG promoted an inhibitory effect on NHE3 activity, whereas BUF was the most effective agent, and demonstrated a dose-dependent response, with maximal inhibition at 50nM. Furthermore, our data showed the role of NKA-Src kinase pathway in the inhibition of NHE3 by CS. Finally, a downstream step, MEK1/2-ERK1/2 was also investigated, and, similar to Src inhibition, the MEK1/2 inhibitor (U0126) suppressed the BUF effect. Our findings indicate the involvement of NKA-SRc-Kinase-Ras-Raf-ERK1/2 pathway in the downregulation of NHE3 by cardiotonic steroids in the renal proximal tubule, promoting a reduction of proximal sodium reabsorption and natriuresis.


Assuntos
Bufanolídeos/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Rim/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Técnicas In Vitro , Túbulos Renais Proximais/metabolismo , Masculino , Ratos , Ratos Wistar , Trocador 3 de Sódio-Hidrogênio , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/fisiologia , Quinases da Família src/fisiologia
3.
Am J Physiol Cell Physiol ; 307(6): C532-41, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25031022

RESUMO

Cumulative evidence suggests that guanylin peptides play an important role on electrolyte homeostasis. We have previously reported that uroguanylin (UGN) inhibits bicarbonate reabsorption in a renal distal tubule. In the present study, we tested the hypothesis that the bicarbonaturic effect of UGN is at least in part attributable to inhibition of H(+)-ATPase-mediated hydrogen secretion in the distal nephron. By in vivo stationary microperfusion experiments, we were able to show that UGN inhibits H(+)-ATPase activity by a PKG-dependent pathway because KT5823 (PKG inhibitor) abolished the UGN effect on distal bicarbonate reabsorption and H89 (PKA inhibitor) was unable to prevent it. The in vivo results were confirmed by the in vitro experiments, where we used fluorescence microscopy to measure intracellular pH (pHi) recovery after an acid pulse with NH4Cl. By this technique, we observed that UGN and 8 bromoguanosine-cGMP (8Br-cGMP) inhibited H(+)-ATPase-dependent pHi recovery and that the UGN inhibitory effect was abolished in the presence of the PKG inhibitor. In addition, by using RT-PCR technique, we verified that Madin-Darby canine kidney (MDCK)-C11 cells express guanylate cyclase-C. Besides, UGN stimulated an increase of both cGMP content and PKG activity but was unable to increase the production of cellular cAMP content and PKA activity. Furthermore, we found that UGN reduced cell surface abundance of H+-ATPase B1 subunit in MDCK-C11 and that this effect was abolished by the PKG inhibitor. Taken together, our data suggest that UGN inhibits H(+)-ATPase activity and surface expression in renal distal cells by a cGMP/PKG-dependent pathway.


Assuntos
Membrana Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Túbulos Renais Distais/efeitos dos fármacos , Peptídeos Natriuréticos/farmacologia , ATPases Translocadoras de Prótons/metabolismo , Animais , Bicarbonatos/metabolismo , Membrana Celular/enzimologia , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Cães , Concentração de Íons de Hidrogênio , Túbulos Renais Distais/enzimologia , Células Madin Darby de Rim Canino , Masculino , Perfusão , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico , Ratos , Ratos Wistar , Receptores Acoplados a Guanilato Ciclase/efeitos dos fármacos , Receptores Acoplados a Guanilato Ciclase/genética , Receptores Acoplados a Guanilato Ciclase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA