Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 15: 1386695, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685945

RESUMO

Birth asphyxia and its main sequel, hypoxic-ischemic encephalopathy, are one of the leading causes of children's deaths worldwide and can potentially worsen the quality of life in subsequent years. Despite extensive research efforts, efficient therapy against the consequences of hypoxia-ischemia occurring in the perinatal period of life is still lacking. The use of hyperbaric oxygen, improving such vital consequences of birth asphyxia as lowered partial oxygen pressure in tissue, apoptosis of neuronal cells, and impaired angiogenesis, is a promising approach. This review focused on the selected aspects of mainly experimental hyperbaric oxygen therapy. The therapeutic window for the treatment of perinatal asphyxia is very narrow, but administering hyperbaric oxygen within those days improves outcomes. Several miRNAs (e.g., mir-107) mediate the therapeutic effect of hyperbaric oxygen by modulating the Wnt pathway, inhibiting apoptosis, increasing angiogenesis, or inducing neural stem cells. Combining hyperbaric oxygen therapy with drugs, such as memantine or ephedrine, produced promising results. A separate aspect is the use of preconditioning with hyperbaric oxygen. Overall, preliminary clinical trials with hyperbaric oxygen therapy used in perinatal asphyxia give auspicious results.

2.
Mol Ther Nucleic Acids ; 35(1): 102141, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38419943

RESUMO

MicroRNA-128-3p (miR-128-3p) is a versatile molecule with multiple functions in the physiopathology of the human central nervous system. Perturbations of miR-128-3p, which is enriched in the brain, contribute to a plethora of neurodegenerative disorders, brain injuries, and malignancies, as this miRNA is a crucial regulator of gene expression in the brain, playing an essential role in the maintenance and function of cells stemming from neuronal lineage. However, the differential expression of miR-128-3p in pathologies underscores the importance of the balance between its high and low levels. Significantly, numerous reports pointed to miR-128-3p as one of the most depleted in glioblastoma, implying it is a critical player in the disease's pathogenesis and thus may serve as a therapeutic agent for this most aggressive form of brain tumor. In this review, we summarize the current knowledge of the diverse roles of miR-128-3p. We focus on its involvement in the neurogenesis and pathophysiology of malignant and neurodegenerative diseases. We also highlight the promising potential of miR-128-3p as an antitumor agent for the future therapy of human cancers, including glioblastoma, and as the linchpin of brain development and function, potentially leading to the development of new therapies for neurological conditions.

3.
Cells ; 12(4)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36831219

RESUMO

The ever-increasing number of cancer cases and persistently high mortality underlines the urgent need to acquire new perspectives for developing innovative therapeutic approaches. As the research on protein-coding genes brought significant yet only incremental progress in the development of anticancer therapy, much attention is now devoted to understanding the role of non-coding RNAs (ncRNAs) in various types of cancer. Recent years have brought about the awareness that ncRNAs recognized previously as "dark matter" are, in fact, key players in shaping cancer development. Moreover, breakthrough discoveries concerning the role of a new group of ncRNAs, circular RNAs, have evidenced their high importance in many diseases, including malignancies. Therefore, in the following review, we focus on the role of circular RNAs in cancer, particularly in cancer stem-like cells, summarize their mechanisms of action, and provide an overview of the state-of-the-art toolkits to study them.


Assuntos
Neoplasias , RNA Circular , Humanos , RNA não Traduzido/genética
4.
Antioxidants (Basel) ; 10(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34829646

RESUMO

The over-activation of NMDA receptors and oxidative stress are important components of neonatal hypoxia-ischemia (HI). Kynurenic acid (KYNA) acts as an NMDA receptor antagonist and is known as a reactive oxygen species (ROS) scavenger, which makes it a potential therapeutic compound. This study aimed to establish the neuroprotective and antioxidant potential of KYNA in an experimental model of HI. HI on seven-day-old rats was used as an experimental model. The animals were injected i.p. with different doses of KYNA 1 h or 6 h after HI. The neuroprotective effect of KYNA was determined by the measurement of brain damage and elements of oxidative stress (ROS and glutathione (GSH) level, SOD, GPx, and catalase activity). KYNA applied 1 h after HI significantly reduced weight loss of the ischemic hemisphere, and prevented neuronal loss in the hippocampus and cortex. KYNA significantly reduced HI-increased ROS, GSH level, and antioxidant enzyme activity. Only the highest used concentration of KYNA showed neuroprotection when applied 6 h after HI. The presented results indicate induction of neuroprotection at the ROS formation stage. However, based on the presented data, it is not possible to pinpoint whether NMDA receptor inhibition or the scavenging abilities are the dominant KYNA-mediated neuroprotective mechanisms.

5.
Cancers (Basel) ; 13(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799381

RESUMO

Oncolytic virus (OV) therapy, which is being tested in clinical trials for glioblastoma, targets cancer cells, while triggering immune cells. Yet OV sensitivity varies from patient to patient. As OV therapy is regarded as an anti-tumor vaccine, by making OV-infected cancer cells secrete immunogenic proteins, linking these proteins to transcriptome would provide a measuring tool to predict their sensitivity. A set of six patient-derived glioblastoma cells treated ex-vivo with herpes simplex virus type 1 (HSV1) modeled a clinical setting of OV infection. The cellular transcriptome and secreted proteome (separated into extracellular vesicles (EV) and EV-depleted fractions) were analyzed by gene microarray and mass-spectroscopy, respectively. Data validation and in silico analysis measured and correlated the secretome content with the response to infection and patient survival. Glioblastoma cells reacted to the OV infection in a seemingly dissimilar fashion, but their transcriptomes changed in the same direction. Therefore, the upregulation of transcripts encoding for secreted proteins implies a common thread in the response of cancer cells to infection. Indeed, the OV-driven secretome is linked to the immune response. While these proteins have distinct membership in either EV or EV-depleted fractions, it is their co-secretion that augments the immune response and associates with favorable patient outcomes.

6.
Antioxidants (Basel) ; 9(8)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823815

RESUMO

Rapid growth of brain tumors such as glioblastoma often results in oxygen deprivation and the emergence of hypoxic zones. In consequence, the enrichment of reactive oxygen species occurs, harming nonmalignant cells and leading them toward apoptotic cell death. However, cancer cells survive such exposure and thrive in a hypoxic environment. As the mechanisms responsible for such starkly different outcomes are not sufficiently explained, we aimed to explore what transcriptome rearrangements are used by glioblastoma cells in hypoxic areas. Using metadata analysis of transcriptome in different subregions of the glioblastoma retrieved from the Ivy Glioblastoma Atlas Project, we created the reactive oxygen species-dependent map of the transcriptome. This map was then used for the analysis of differential gene expression in the histologically determined cellular tumors and hypoxic zones. The gene ontology analysis cross-referenced with the clinical data from The Cancer Genome Atlas revealed that the metabolic shift is one of the major prosurvival strategies applied by cancer cells to overcome hypoxia-related cytotoxicity.

7.
Cancers (Basel) ; 12(5)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413951

RESUMO

Malignant brain tumor-glioblastoma is not only difficult to treat but also hard to study and model. One of the reasons for these is their heterogeneity, i.e., individual tumors consisting of cancer cells that are unlike each other. Such diverse cells can thrive due to the simultaneous co-evolution of anatomic niches and adaption into zones with distorted homeostasis of oxygen. It dampens cytotoxic and immune therapies as the response depends on the cellular composition and its adaptation to hypoxia. We explored what transcriptome reposition strategies are used by cells in the different areas of the tumor. We created the hypoxic map by differential expression analysis between hypoxic and cellular features using RNA sequencing data cross-referenced with the tumor's anatomic features (Ivy Glioblastoma Atlas Project). The molecular functions of genes differentially expressed in the hypoxic regions were analyzed by a systematic review of the gene ontology analysis. To put a hypoxic niche signature into a clinical context, we associated the model with patients' survival datasets (The Cancer Genome Atlas). The most unique class of genes in the hypoxic area of the tumor was associated with the process of autophagy. Both hypoxic and cellular anatomic features were enriched in immune response genes whose, along with autophagy cluster genes, had the power to predict glioblastoma patient survival. Our analysis revealed that transcriptome responsive to hypoxia predicted worse patients' outcomes by driving tumor cell adaptation to metabolic stress and immune escape.

8.
Oncotarget ; 10(18): 1716-1728, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30899443

RESUMO

The cholesterol-lowering statins have known anti-cancer effects, but the mechanisms and how to utilize statins in oncology have been unclear. We noted in the CellMiner database that statin activity against cancer lines correlated with higher expression of TGF-ß target genes such as SERPINE1 and ZYX. This prompted us to assess whether statins affected TGF-ß activity in glioblastoma (GBM), a cancer strongly influenced by TGF-ß and in dire need of new therapeutic approaches. We noted that statins reduced TGF-ß activity, cell viability and invasiveness, Rho/ROCK activity, phosphorylation and activity of the TGF-ß mediator Smad3, and expression of TGF-ß targets ZYX and SERPINE1 in GBM and GBM-initiating cell (GIC) lines. Statins were most potent against GBM, GIC, and other cancer cells with high TGF-ß activity, and exogenous TGF-ß further sensitized mesenchymal GICs to statins. Statin toxicity was rescued by addition of exogenous mevalonolactone or geranylgeranyl pyrophosphate, indicating that the observed effects reflected inhibition of HMG CoA-reductase by the statins. Simvastatin significantly inhibited the growth of subcutaneous GIC grafts and prolonged survival in GIC intracranially grafted mice. These results indicate where the statins might best be applied as adjunct therapies in oncology, against GBM and other cancers with high TGF-ß activity, and have implications for other statin roles outside of oncology.

9.
Noncoding RNA ; 5(1)2019 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-30813461

RESUMO

The mammalian brain is made up of billions of neurons and supporting cells (glial cells), intricately connected. Molecular perturbations often lead to neurodegeneration by progressive loss of structure and malfunction of neurons, including their death. On the other side, a combination of genetic and cellular factors in glial cells, and less frequently in neurons, drive oncogenic transformation. In both situations, microenvironmental niches influence the progression of diseases and therapeutic responses. Dynamic changes that occur in cellular transcriptomes during the progression of developmental lineages and pathogenesis are controlled through a variety of regulatory networks. These include epigenetic modifications, signaling pathways, and transcriptional and post-transcriptional mechanisms. One prominent component of the latter is small non-coding RNAs, including microRNAs, that control the vast majority of these networks including genes regulating neural stemness, differentiation, apoptosis, projection fates, migration and many others. These cellular processes are also profoundly dependent on the microenvironment, stemness niche, hypoxic microenvironment, and interactions with associated cells including endothelial and immune cells. Significantly, the brain of all other mammalian organs expresses the highest number of microRNAs, with an additional gain in expression in the early stage of neurodegeneration and loss in expression in oncogenesis. However, a mechanistic explanation of the concept of an apparent inverse correlation between the odds of cancer and neurodegenerative diseases is only weakly developed. In this review, we thus will discuss widespread de-regulation of microRNAome observed in these two major groups of brain pathologies. The deciphering of these intricacies is of importance, as therapeutic restoration of pre-pathological microRNA landscape in neurodegeneration must not lead to oncogenesis and vice versa. We thus focus on microRNAs engaged in cellular processes that are inversely regulated in these diseases. We also aim to define the difference in microRNA networks between pro-survival and pro-apoptotic signaling in the brain.

10.
Noncoding RNA ; 5(1)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875963

RESUMO

Malignant glioblastoma (GBM, glioma) is the most common and aggressive primary adult brain tumor. The prognosis of GBM patients remains poor, despite surgery, radiation and chemotherapy. The major obstacles for successful remedy are invasiveness and therapy resistance of GBM cells. Invasive glioma cells leave primary tumor core and infiltrate surrounding normal brain leading to inevitable recurrence, even after surgical resection, radiation and chemotherapy. Therapy resistance allowing for selection of more aggressive and resistant sub-populations including GBM stem-like cells (GSCs) upon treatment is another serious impediment to successful treatment. Through their regulation of multiple genes, microRNAs can orchestrate complex programs of gene expression and act as master regulators of cellular processes. MicroRNA-based therapeutics could thus impact broad cellular programs, leading to inhibition of invasion and sensitization to radio/chemotherapy. Our data show that miR-451 attenuates glioma cell migration in vitro and invasion in vivo. In addition, we have found that miR-451 sensitizes glioma cells to conventional chemo- and radio-therapy. Our data also show that miR-451 is regulated in vivo by AMPK pathway and that AMPK/miR-451 loop has the ability to switch between proliferative and migratory pattern of glioma cells behavior. We therefore postulate that AMPK/miR-451 negative reciprocal feedback loop allows GBM cells/GSCs to adapt to tumor "ecosystem" by metabolic and behavioral flexibility, and that disruption of such a loop reduces invasiveness and diminishes therapy resistance.

11.
Nat Commun ; 10(1): 442, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683859

RESUMO

MicroRNA deregulation is a consistent feature of glioblastoma, yet the biological effect of each single gene is generally modest, and therapeutically negligible. Here we describe a module of microRNAs, constituted by miR-124, miR-128 and miR-137, which are co-expressed during neuronal differentiation and simultaneously lost in gliomagenesis. Each one of these miRs targets several transcriptional regulators, including the oncogenic chromatin repressors EZH2, BMI1 and LSD1, which are functionally interdependent and involved in glioblastoma recurrence after therapeutic chemoradiation. Synchronizing the expression of these three microRNAs in a gene therapy approach displays significant anticancer synergism, abrogates this epigenetic-mediated, multi-protein tumor survival mechanism and results in a 5-fold increase in survival when combined with chemotherapy in murine glioblastoma models. These transgenic microRNA clusters display intercellular propagation in vivo, via extracellular vesicles, extending their biological effect throughout the whole tumor. Our results support the rationale and feasibility of combinatorial microRNA strategies for anticancer therapies.


Assuntos
Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , MicroRNAs/genética , Animais , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Análise por Conglomerados , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Feminino , Raios gama/uso terapêutico , Glioblastoma/mortalidade , Glioblastoma/patologia , Glioblastoma/terapia , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Neuroglia/efeitos da radiação , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Análise de Sobrevida , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Res ; 78(15): 4360-4369, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29844123

RESUMO

Glioblastoma (GBM) is the most common primary brain malignancy and carries an extremely poor prognosis. Recent molecular studies revealed the CDK4/6-Rb-E2F axis and receptor tyrosine kinase (RTK) signaling to be deregulated in most GBM, creating an opportunity to develop more effective therapies by targeting both pathways. Using a phospho-RTK protein array, we found that both c-Met and TrkA-B pathways were significantly activated upon CDK4/6 inhibition in GBM cells. We therefore investigated the efficacy of combined CDK4/6 and c-Met/TrkA-B inhibition against GBM. We show that both c-Met and TrkA-B pathways transactivate each other, and targeting both pathways simultaneously results in more efficient pathway suppression. Mechanistically, inhibition of CDK4/6 drove NF-κB-mediated upregulation of hepatocyte growth factor, brain-derived neurotrophic factor, and nerve growth factor that in turn activated both c-Met and TrkA-B pathways. Combining the CDK4/6 inhibitor abemaciclib with the c-Met/Trk inhibitor altiratinib or the corresponding siRNAs induced apoptosis, leading to significant synergy against GBM. Collectively, these findings demonstrate that the activation of c-Met/TrkA-B pathways is a novel mechanism involved in therapeutic resistance of GBM to CDK4/6 inhibition and that dual inhibition of c-Met/Trk with CDK4/6 should be considered in future clinical trials.Significance: CDK4/6 inhibition in glioblastoma activates the c-Met and TrkA-B pathways mediated by NF-κB and can be reversed by a dual c-Met/Trk inhibitor. Cancer Res; 78(15); 4360-9. ©2018 AACR.


Assuntos
Neoplasias Encefálicas/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Glioblastoma/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptor trkA/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Glioblastoma/dietoterapia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos
13.
Sci Adv ; 4(3): eaar2766, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29532035

RESUMO

Binding of programmed death ligand-1 (PD-L1) to programmed cell death protein-1 (PD1) leads to cancer immune evasion via inhibition of T cell function. One of the defining characteristics of glioblastoma, a universally fatal brain cancer, is its profound local and systemic immunosuppression. Glioblastoma has also been shown to generate extracellular vesicles (EVs), which may play an important role in tumor progression. We thus hypothesized that glioblastoma EVs may be important mediators of immunosuppression and that PD-L1 could play a role. We show that glioblastoma EVs block T cell activation and proliferation in response to T cell receptor stimulation. PD-L1 was expressed on the surface of some, but not of all, glioblastoma-derived EVs, with the potential to directly bind to PD1. An anti-PD1 receptor blocking antibody significantly reversed the EV-mediated blockade of T cell activation but only when PD-L1 was present on EVs. When glioblastoma PD-L1 was up-regulated by IFN-γ, EVs also showed some PD-L1-dependent inhibition of T cell activation. PD-L1 expression correlated with the mesenchymal transcriptome profile and was anatomically localized in the perinecrotic and pseudopalisading niche of human glioblastoma specimens. PD-L1 DNA was present in circulating EVs from glioblastoma patients where it correlated with tumor volumes of up to 60 cm3. These results suggest that PD-L1 on EVs may be another mechanism for glioblastoma to suppress antitumor immunity and support the potential of EVs as biomarkers in tumor patients.


Assuntos
Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/imunologia , Vesículas Extracelulares/metabolismo , Glioblastoma/imunologia , Evasão da Resposta Imune , Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T , Regulação para Cima
14.
Neuro Oncol ; 20(2): 192-202, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29048560

RESUMO

Background: The mesenchymal phenotype in glioblastoma (GBM) and other cancers drives aggressiveness and treatment resistance, leading to therapeutic failure and recurrence of disease. Currently, there is no successful treatment option available against the mesenchymal phenotype. Methods: We classified patient-derived GBM stem cell lines into 3 subtypes: proneural, mesenchymal, and other/classical. Each subtype's response to the inhibition of diacylglycerol kinase alpha (DGKα) was compared both in vitro and in vivo. RhoA activation, liposome binding, immunoblot, and kinase assays were utilized to elucidate the novel link between DGKα and geranylgeranyltransferase I (GGTase I). Results: Here we show that inhibition of DGKα with a small-molecule inhibitor, ritanserin, or RNA interference preferentially targets the mesenchymal subtype of GBM. We show that the mesenchymal phenotype creates the sensitivity to DGKα inhibition; shifting GBM cells from the proneural to the mesenchymal subtype increases ritanserin activity, with similar effects in epithelial-mesenchymal transition models of lung and pancreatic carcinoma. This enhanced sensitivity of mesenchymal cancer cells to ritanserin is through inhibition of GGTase I and downstream mediators previously associated with the mesenchymal cancer phenotype, including RhoA and nuclear factor-kappaB. DGKα inhibition is synergistic with both radiation and imatinib, a drug preferentially affecting proneural GBM. Conclusions: Our findings demonstrate that a DGKα-GGTase I pathway can be targeted to combat the treatment-resistant mesenchymal cancer phenotype. Combining therapies with greater activity against each GBM subtype may represent a viable therapeutic option against GBM.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Diacilglicerol Quinase/antagonistas & inibidores , Glioblastoma/patologia , Ritanserina/farmacologia , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Diacilglicerol Quinase/genética , Feminino , Humanos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Oncotarget ; 8(33): 55319-55331, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28903422

RESUMO

Glioblastoma (GBM) is the most common and lethal brain tumor. Gene expression profiling has classified GBM into distinct subtypes, including proneural, mesenchymal, and classical, and identifying therapeutic vulnerabilities of these subtypes is an extremely high priority. We leveraged The Cancer Genome Atlas (TCGA) data, in particular for microRNA expression, to seek druggable core pathways in GBM. The E2F1-regulated miR-17˜92 cluster and its analogs are shown to be highly expressed in proneural GBM and in GSC lines, suggesting the E2F cell cycle pathway might be a key driver in proneural GBM. Consistently, CDK4/6 inhibition with palbociclib preferentially inhibited cell proliferation in vitro in a majority of proneural GSCs versus those of other subtypes. Palbociclib treatment significantly prolonged survival of mice with established intracranial xenografts of a proneural GSC line. We show that most of these sensitive PN GSCs expressed higher levels of CDK6 and had intact Rb1, while two GSC lines with CDK4 overexpression and null Rb1 were highly resistant to palbociclib. Importantly, palbociclib treatment of proneural GSCs upregulated mesenchymal-associated markers and downregulated proneural-associated markers, suggesting that CDK4/6 inhibition induced proneural-mesenchymal transition and underscoring the enhanced role of the E2F cell cycle pathway in the proneural subtype. Lastly, the combination of palbociclib and N,N-diethylaminobenzaldehyde, an inhibitor of the mesenchymal driver ALDH1A3, showed strong synergistic inhibitory effects against proneural GSC proliferation. Taken together, our results reveal that proneural GBM has increased vulnerability to CDK4/6 inhibition, and the proneural subtype undergoes dynamic reprogramming upon palbociclib treatment-suggesting the need for a combination therapeutic strategy.

16.
Clin Cancer Res ; 23(22): 6958-6968, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28814434

RESUMO

Purpose: Glioblastoma (GBM) is a deadly brain tumor marked by dysregulated signaling and aberrant cell-cycle control. Molecular analyses have identified that the CDK4/6-Rb-E2F axis is dysregulated in about 80% of GBMs. Single-agent CDK4/6 inhibitors have failed to provide durable responses in GBM, suggesting a need to combine them with other agents. We investigate the efficacy of the combination of CDK4/6 inhibition and mTOR inhibition against GBM.Experimental Design: Preclinical in vitro and in vivo assays using primary GBM cell lines were performed.Results: We show that the CDK4/6 inhibitor palbociclib suppresses the activity of downstream mediators of the mTOR pathway, leading to rebound mTOR activation that can be blocked by the mTOR inhibitor everolimus. We further show that mTOR inhibition with everolimus leads to activation of the Ras mediator Erk that is reversible with palbociclib. The combined treatment strongly disrupts GBM metabolism, resulting in significant apoptosis. Further increasing the utility of the combination for brain cancers, everolimus significantly increases the brain concentration of palbociclib.Conclusions: Our findings demonstrate that the combination of CDK4/6 and mTOR inhibition has therapeutic potential against GBM and suggest it should be evaluated in a clinical trial. Clin Cancer Res; 23(22); 6958-68. ©2017 AACR.


Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Glioblastoma/metabolismo , Glioblastoma/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Sinergismo Farmacológico , Everolimo/farmacologia , Feminino , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Modelos Biológicos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cell Rep ; 19(10): 2026-2032, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28591575

RESUMO

Large-scale transcriptomic profiling of glioblastoma (GBM) into subtypes has provided remarkable insight into the pathobiology and heterogeneous nature of this disease. The mechanisms of speciation and inter-subtype transitions of these molecular subtypes require better characterization to facilitate the development of subtype-specific targeting strategies. The deregulation of microRNA expression among GBM subtypes and their subtype-specific targeting mechanisms are poorly understood. To reveal the underlying basis of microRNA-driven complex subpopulation dynamics within the heterogeneous intra-tumoral ecosystem, we characterized the expression of the subtype-enriched microRNA-128 (miR-128) in transcriptionally and phenotypically diverse subpopulations of patient-derived glioblastoma stem-like cells. Because microRNAs are capable of re-arranging the molecular landscape in a cell-type-specific manner, we argue that alterations in miR-128 levels are a potent mechanism of bidirectional transitions between GBM subpopulations, resulting in intermediate hybrid stages and emphasizing highly intricate intra-tumoral networking.


Assuntos
Glioblastoma/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Neoplásico/metabolismo , Animais , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , RNA Neoplásico/genética
18.
Stem Cell Reports ; 8(6): 1497-1505, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28528698

RESUMO

Despite the importance of molecular subtype classification of glioblastoma (GBM), the extent of extracellular vesicle (EV)-driven molecular and phenotypic reprogramming remains poorly understood. To reveal complex subpopulation dynamics within the heterogeneous intratumoral ecosystem, we characterized microRNA expression and secretion in phenotypically diverse subpopulations of patient-derived GBM stem-like cells (GSCs). As EVs and microRNAs convey information that rearranges the molecular landscape in a cell type-specific manner, we argue that intratumoral exchange of microRNA augments the heterogeneity of GSC that is reflected in highly heterogeneous profile of microRNA expression in GBM subtypes.


Assuntos
Neoplasias Encefálicas/patologia , Vesículas Extracelulares/metabolismo , Glioblastoma/patologia , MicroRNAs/metabolismo , Antígeno AC133/metabolismo , Animais , Neoplasias Encefálicas/genética , Exossomos/metabolismo , Feminino , Glioblastoma/genética , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Tetraspanina 30/metabolismo , Transcriptoma , Transplante Heterólogo , Células Tumorais Cultivadas
19.
Cell Rep ; 15(11): 2500-9, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27264189

RESUMO

Long non-coding RNAs (lncRNAs) have an undefined role in the pathobiology of glioblastoma multiforme (GBM). These tumors are genetically and phenotypically heterogeneous with transcriptome subtype-specific GBM stem-like cells (GSCs) that adapt to the brain tumor microenvironment, including hypoxic niches. We identified hypoxia-inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2) as a subtype-specific hypoxia-inducible lncRNA, upregulated in mesenchymal GSCs. Its deregulation affects GSC growth, self-renewal, and hypoxia-dependent molecular reprogramming. Among the HIF1A-AS2 interactome, IGF2BP2 and DHX9 were identified as direct partners. This association was needed for maintenance of expression of their target gene, HMGA1. Downregulation of HIF1A-AS2 led to delayed growth of mesenchymal GSC tumors, survival benefits, and impaired expression of HMGA1 in vivo. Our data demonstrate that HIF1A-AS2 contributes to GSCs' speciation and adaptation to hypoxia within the tumor microenvironment, acting directly through its interactome and targets and indirectly by modulating responses to hypoxic stress depending on the subtype-specific genetic context.


Assuntos
Glioblastoma/genética , Glioblastoma/patologia , Células-Tronco Mesenquimais/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , RNA Longo não Codificante/metabolismo , Nicho de Células-Tronco , Hipóxia Celular/genética , Linhagem Celular Tumoral , Linhagem da Célula , Progressão da Doença , Heterogeneidade Genética , Humanos , RNA Longo não Codificante/genética , RNA Neoplásico/metabolismo
20.
Cancer Res ; 76(10): 2876-81, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27013191

RESUMO

A lack of experimental models of tumor heterogeneity limits our knowledge of the complex subpopulation dynamics within the tumor ecosystem. In high-grade gliomas (HGG), distinct hierarchical cell populations arise from different glioma stem-like cell (GSC) subpopulations. Extracellular vesicles (EV) shed by cells may serve as conduits of genetic and signaling communications; however, little is known about how HGG heterogeneity may impact EV content and activity. In this study, we performed a proteomic analysis of EVs isolated from patient-derived GSC of either proneural or mesenchymal subtypes. EV signatures were heterogeneous, but reflected the molecular make-up of the GSC and consistently clustered into the two subtypes. EV-borne protein cargos transferred between proneural and mesenchymal GSC increased protumorigenic behaviors in vitro and in vivo Clinically, analyses of HGG patient data from the The Cancer Genome Atlas database revealed that proneural tumors with mesenchymal EV signatures or mesenchymal tumors with proneural EV signatures were both associated with worse outcomes, suggesting influences by the proportion of tumor cells of varying subtypes in tumors. Collectively, our findings illuminate the heterogeneity among tumor EVs and the complexity of HGG heterogeneity, which these EVs help to maintain. Cancer Res; 76(10); 2876-81. ©2016 AACR.


Assuntos
Neoplasias Encefálicas/patologia , Carcinogênese , Vesículas Extracelulares/patologia , Glioma/patologia , Células-Tronco Mesenquimais/patologia , Células-Tronco Neoplásicas/patologia , Animais , Apoptose , Western Blotting , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Vesículas Extracelulares/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Gradação de Tumores , Células-Tronco Neoplásicas/metabolismo , Proteômica , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA