Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4450, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396018

RESUMO

Quantum dots are promising candidates for telecom single photon sources due to their tunable emission across the different low-loss telecommunications bands, making them compatible with existing fiber networks. Their suitability for integration into photonic structures allows for enhanced brightness through the Purcell effect, supporting efficient quantum communication technologies. Our work focuses on InAs/InP QDs created via droplet epitaxy MOVPE to operate within the telecoms C-band. We observe a short radiative lifetime of 340 ps, arising from a Purcell factor of 5, owing to integration of the QD within a low-mode-volume photonic crystal cavity. Through in-situ control of the sample temperature, we show both temperature tuning of the QD's emission wavelength and a preserved single photon emission purity at temperatures up to 25K. These findings suggest the viability of QD-based, cryogen-free C-band single photon sources, supporting applicability in quantum communication technologies.

2.
Nanotechnology ; 33(6)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34731846

RESUMO

InAs quantum dots (QDs) are grown on an In0.53Ga0.47As interlayer and embedded in an InP(100) matrix. They are fabricated via droplet epitaxy (DE) in a metal organic vapor phase epitaxy (MOVPE) reactor. Formation of metallic indium droplets on the In0.53Ga0.47As lattice-matched layer and their crystallization into QDs is demonstrated for the first time in MOVPE. The presence of the In0.53Ga0.47As layer prevents the formation of an unintentional non-stoichiometric 2D layer underneath and around the QDs, via suppression of the As-P exchange. The In0.53Ga0.47As layer affects the surface diffusion leading to a modified droplet crystallization process, where unexpectedly the size of the resulting QDs is found to be inversely proportional to the indium supply. Bright single dot emission is detected via micro-photoluminescence at low temperature, ranging from 1440 to 1600 nm, covering the technologically relevant telecom C-band. Transmission electron microscopy investigations reveal buried quantum dots with truncated pyramid shape without defects or dislocations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA