Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 39(2): 59, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36572801

RESUMO

Long-term use of toxic pesticides in agricultural grounds has led to adverse effects on the environment and human health. Microbe-mediated biodegradation of pollutants is considered an effective strategy for the removal of contaminants in agricultural and environmental sustainability. Imidacloprid, a neonicotinoid class of pesticides, was widely applied insecticide in the control of pests in agricultural fields including the tea gardens of Assam. Here, native bacteria from imidacloprid contaminating tea garden soils were isolated and screened for imidacloprid degradation efficiency under laboratory conditions. Out of the 30 bacterial isolates, 4 were found to tolerate high concentrations of imidacloprid (25,000 ppm), one of which isolate MBSB-12 showed the highest efficiency for imidacloprid tolerance and utilization as the sole carbon source. Morphological, biochemical, and 16 S ribosomal RNA gene sequencing-based characterization revealed the isolate as Pseudomonas plecoglossicida MBSB-12. The isolate reduced 87% of extractable imidacloprid from the treated soil in 90 days compared to the control soil (without bacterial treatment). High-Resolution Mass Spectrometry (HRMS) analysis indicated imidacloprid breakdown to comparatively less harmful products viz., imidacloprid guanidine olefin [m/z = 209.0510 (M + H)+], imidacloprid urea [m/z = 212.0502 (M + H)+] and a dechlorinated degraded product of imidacloprid with m/z value 175.0900 (M + H)+. Further investigation on the molecular machinery of P. plecoglossicida MBSB-12 involved in the degradation of imidacloprid is expected to provide a better understanding of the degradation pathway.


Assuntos
Praguicidas , Poluentes do Solo , Humanos , Solo/química , Poluentes do Solo/metabolismo , Neonicotinoides/análise , Biodegradação Ambiental , Chá , Microbiologia do Solo
2.
Curr Microbiol ; 80(1): 10, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36445553

RESUMO

The last two decades have witnessed a large-scale conversion of crop cultivation areas into small and mid-sized tea plantations in Assam, India. Agricultural land-use pattern positively or negatively influences native hydrology and above- and belowground biodiversity. Very little is known about the effect of agricultural land-use patterns on the soil virus (especially, bacteriophage) community structure and function. This metagenomic-based study evaluated the rhizosphere viral community structure of three interlinked cultivation areas, viz., mixed cropping area (coded as CP1), tea-seed orchard (CP2), and monocropping tea cultivation (CP3). The bacteriophages belonged to four major classes with the dominance of Malgrandaviricetes (CP1: 79.37%; CP2: 64.62%; CP3: 4.85%) followed by Caudoviricetes (CP1: 20.49%; CP2: 35.22%; CP3: 90.29%), Faserviricetes (CP1: 0.03%; CP2: 0.08%; CP3: 3.88%), and Tectiliviricetes (CP1: 0.12%; CP2: 0.07%; CP3: 0.97%). Microviruses dominated the phage population in both CP1 and CP2, representing 79.35% and 64.59% of total bacteriophage abundance. Both CP1 and CP2 had higher bacteriophage richness (species richness, R in CP1: 65; R in CP2: 66) and lower evenness (Pielou's evenness index, J in CP1: 0.531; J in CP2: 0.579) compared to the CP3 (R: 30; J: 0.902). Principal component analysis of edaphic soil factors and bacteriophage community structure showed a reverse-proportional correlation between the levels of Al saturation, and exchangeable Al3+ ions with that of soil pH, and bacteriophage abundance. Our study indicates that monocropping tea cultivation soil bears less viral richness, abundance, and heterogeneity.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Agricultura , Solo , Biodiversidade , Chá
3.
Arch Microbiol ; 203(9): 5661-5674, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34462787

RESUMO

We employed an Illumina-based high-throughput metagenomics sequencing approach to unveil the rhizosphere and root endosphere microbial community associated with an organically grown Camellia population located at the Experimental Garden for Plantation Crops, Assam (India). The de novo assembled tea root endosphere metagenome contained 24,231 contigs (total 7,771,089 base pairs with an average length of 321 bps), while tea rhizosphere soil metagenome contained 261,965 sequences (total 230,537,174 base pairs, average length 846). The most prominent rhizobacteria belonged to the genera, viz., Bacillus (10.35%), Candidatus Solibacter (6.36%), Burkholderia (5.19%), Pseudomonas (3.9%), Streptomyces (3.52%), and Bradyrhizobium (2.77%), while the root endosphere was dominated by bacterial genera, viz., Serratia (46.64%), Methylobacterium (8.02%), Yersinia (5.97%), Burkholderia (2.05%), etc. The presence of few agronomically important bacterial genera, Bradyrhizobium, Rhizobium (each 0.93%), Sinorhizobium (0.34%), Azorhizobium, and Flavobacterium (0.17% each), was also detected in the root endosphere. KEGG pathway mapping indicated the presence of microbial metabolic pathway genes related to tyrosine metabolism, tryptophan metabolism, glyoxylate, and dicarboxylate metabolism which play important roles in endosphere activities, including survival, growth promotion, and host adaptation. The root endosphere microbiome also contained few important plant growth promoting traits related to phytohormone production, abiotic stress alleviation, mineral solubilization, and plant disease suppression.


Assuntos
Camellia sinensis , Microbiologia do Solo , Raízes de Plantas , Rizosfera , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA