Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Comput Biol Med ; 165: 107416, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37660568

RESUMO

In recent years, supervised machine learning models trained on videos of animals with pose estimation data and behavior labels have been used for automated behavior classification. Applications include, for example, automated detection of neurological diseases in animal models. However, we identify two potential problems of such supervised learning approach. First, such models require a large amount of labeled data but the labeling of behaviors frame by frame is a laborious manual process that is not easily scalable. Second, such methods rely on handcrafted features obtained from pose estimation data that are usually designed empirically. In this paper, we propose to overcome these two problems using contrastive learning for self-supervised feature engineering on pose estimation data. Our approach allows the use of unlabeled videos to learn feature representations and reduce the need for handcrafting of higher-level features from pose positions. We show that this approach to feature representation can achieve better classification performance compared to handcrafted features alone, and that the performance improvement is due to contrastive learning on unlabeled data rather than the neural network architecture. The method has the potential to reduce the bottleneck of scarce labeled videos for training and improve performance of supervised behavioral classification models for the study of interaction behaviors in animals.


Assuntos
Trabalho de Parto , Animais , Gravidez , Feminino , Redes Neurais de Computação , Aprendizado de Máquina Supervisionado
2.
Stem Cells Transl Med ; 12(8): 510-526, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37487111

RESUMO

Neurodegenerative diseases (ND) are an entire spectrum of clinical conditions that affect the central and peripheral nervous system. There is no cure currently, with treatment focusing mainly on slowing down progression or symptomatic relief. Cellular therapies with various cell types from different sources are being conducted as clinical trials for several ND diseases. They include neural, mesenchymal and hemopoietic stem cells, and neural cells derived from embryonic stem cells and induced pluripotent stem cells. In this review, we present the list of cellular therapies for ND comprising 33 trials that used neural stem progenitors, 8 that used differentiated neural cells ,and 109 trials that involved non-neural cells in the 7 ND. Encouraging results have been shown in a few early-phase clinical trials that require further investigations in a randomized setting. However, such definitive trials may not be possible given the relative cost of the trials, and in the setting of rare diseases.


Assuntos
Doenças Neurodegenerativas , Células-Tronco Pluripotentes , Humanos , Doenças Neurodegenerativas/terapia , Transplante de Células-Tronco/métodos , Neurônios/fisiologia , Células-Tronco Embrionárias , Células-Tronco Pluripotentes/fisiologia
3.
Biology (Basel) ; 12(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37237509

RESUMO

Breast cancer is now the most common cancer worldwide, and it is also the main cause of cancer-related death in women. Survival rates for female breast cancer have significantly improved due to early diagnosis and better treatment. Nevertheless, for patients with advanced or metastatic breast cancer, the survival rate is still low, reflecting a need for the development of new therapies. Mechanistic insights into metastatic breast cancer have provided excellent opportunities for developing novel therapeutic strategies. Although high-throughput approaches have identified several therapeutic targets in metastatic disease, some subtypes such as triple-negative breast cancer do not yet have an apparent tumor-specific receptor or pathway to target. Therefore, exploring new druggable targets in metastatic disease is a high clinical priority. In this review, we summarize the emerging intrinsic therapeutic targets for metastatic breast cancer, including cyclin D-dependent kinases CDK4 and CDK6, the PI3K/AKT/mTOR pathway, the insulin/IGF1R pathway, the EGFR/HER family, the JAK/STAT pathway, poly(ADP-ribose) polymerases (PARP), TROP-2, Src kinases, histone modification enzymes, activated growth factor receptors, androgen receptors, breast cancer stem cells, matrix metalloproteinases, and immune checkpoint proteins. We also review the latest development in breast cancer immunotherapy. Drugs that target these molecules/pathways are either already FDA-approved or currently being tested in clinical trials.

4.
Cells ; 12(6)2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36980275

RESUMO

Biophysical parameters such as substrate topography and stiffness have been shown independently to elicit profound effects on neuronal differentiation and maturation from neural progenitor cells (NPCs) yet have not been investigated in combination. Here, the effects of various micrograting and stiffness combinations on neuronal differentiation and maturation were investigated using a polyacrylamide and N-acryloyl-6-aminocaproic acid copolymer (PAA-ACA) hydrogel with tunable stiffness. Whole laminin was conjugated onto the PAA-ACA surface indirectly or directly to facilitate long-term mouse and human NPC-derived neuron attachment. Three micrograting dimensions (2-10 µm) were patterned onto gels with varying stiffness (6.1-110.5 kPa) to evaluate the effects of topography, stiffness, and their interaction. The results demonstrate that the extracellular matrix (ECM)-modified PAA-ACA gels support mouse and human neuronal cell attachment throughout the differentiation and maturation stages (14 and 28 days, respectively). The interaction between topography and stiffness is shown to significantly increase the proportion of ß-tubulin III (TUJ1) positive neurons and microtubule associated protein-2 (MAP2) positive neurite branching and length. Thus, the effects of topography and stiffness cannot be imparted. These results provide a novel platform for neural mechanobiology studies and emphasize the utility of optimizing numerous biophysical cues for improved neuronal yield in vitro.


Assuntos
Hidrogéis , Células-Tronco Neurais , Camundongos , Animais , Humanos , Hidrogéis/farmacologia , Neurônios , Matriz Extracelular , Diferenciação Celular
5.
Front Pharmacol ; 13: 940798, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928279

RESUMO

The deleterious effects of methamphetamine (METH) exposure extend beyond abusers, and may potentially impact the vulnerability of their offspring in developing addictive behaviors. Epigenetic signatures have been implicated in addiction, yet the characteristics to identify prenatal METH abuse to offspring addiction risk remains elusive. Here, we used escalating doses of METH-exposed mouse model in F0 female mice before and during pregnancy to simulate the human pattern of drug abuse and generated METH-induced behavioral sensitization to investigate the addictive behavior in offspring mice. We then utilized whole genome-bisulfite sequencing (WGBS) to investigate the methylation signature of nucleus accumbens (NAc) in male METH-sensitized mice. Interestingly, male but not female offspring exhibited an enhanced response to METH-induced behavioral sensitization. Additionally, the METH-exposed group of male mice underwent a more comprehensive wave of epigenome remodeling over all genomic elements compared with unexposed groups due to drug exposure history. 104,219 DMCs (METH-SAL vs. SAL-SAL) induced by prenatal METH-exposure were positively correlated with that of postnatal METH-exposure (38,570, SAL-METH vs. SAL-SAL). Moreover, 4,983 DMCs induced by pre- and postnatal METH exposure (METH-METH vs. SAL-METH) were negatively correlated with that of postnatal METH exposure, and 371 commonly changed DMCs between the two comparison groups also showed a significantly negative correlation and 86 annotated genes functionally enriched in the pathways of neurodevelopment and addiction. Key annotated genes included Kirrel3, Lrpprc, and Peg3, implicated in neurodevelopmental processes, were down-regulated in METH-METH group mice compared with the SAL-METH group. Taken together, we render novel insights into the epigenetic correlation of drug exposure and provide evidence for epigenetic characteristics that link maternal METH exposure to the intensity of the same drug-induced behavioral sensitization in adult offspring.

6.
Front Digit Health ; 4: 875895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35899035

RESUMO

The definitive diagnosis of Alzheimer's Disease (AD) without the need for neuropathological confirmation remains a challenge in AD research today, despite efforts to uncover the molecular and biological underpinnings of the disease process. Furthermore, the potential for therapeutic intervention is limited upon the onset of symptoms, providing motivation for studying and treating the AD precursor mild cognitive impairment (MCI), the prodromal stage of AD instead. Applying machine learning classification to transcriptomic data of MCI, AD, and cognitively normal (CN) control patients, we identified differentially expressed genes that serve as biomarkers for the characterization and classification of subjects into MCI or AD groups. Predictive models employing these biomarker genes exhibited good classification performances for CN, MCI, and AD, significantly above random chance. The PI3K-Akt, IL-17, JAK-STAT, TNF, and Ras signaling pathways were also enriched in these biomarker genes, indicating their diagnostic potential and pathophysiological roles in MCI and AD. These findings could aid in the recognition of MCI and AD risk in clinical settings, allow for the tracking of disease progression over time in individuals as part of a therapeutic approach, and provide possible personalized drug targets for early intervention of MCI and AD.

7.
Mol Psychiatry ; 27(9): 3885-3897, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35715487

RESUMO

Methamphetamine (METH) is a widely abused psychostimulant, whose hyper-rewarding property is believed to underlie its addictive effect, but the molecular mechanism regulating this effect remains unclear. We previously reported that decreased expression of a novel microRNA (miRNA), novel-m009C, is implicated in the regulation of METH hyperlocomotion. Here, we found that novel-m009C may be homologous to hsa-miR-604. Its expression is consistently downregulated in the nucleus accumbens (NAc) of mice when exposed to METH and cocaine, whereas significant alterations in novel-m009C expression were not observed in the NAc of mice subjected to other rewarding and psychiatric stimuli, such as sucrose, morphine and MK-801. We further found the substantial reduction in novel-m009C expression may be regulated by both dopamine receptor D1 (D1R) and D2 (D2R). Increasing novel-m009C levels in the NAc attenuated METH-induced conditioned place preference (CPP) and hyperlocomotion, whereas inhibiting novel-m009C expression in the NAc enhanced these effects but did not change the preference of mice for a natural reward, i.e., sucrose. These effects may involve targeting of genes important for the synaptic transmission, such as Grin1 (NMDAR subunit 1). Our findings demonstrate an important role for NAc novel-m009C in regulating METH reward, reveal a novel molecular regulator of the actions of METH on brain reward circuitries and provide a new strategy for treating METH addiction based on the modulation of small non-coding RNAs.


Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , MicroRNAs , Animais , Camundongos , Estimulantes do Sistema Nervoso Central/farmacologia , Metanfetamina/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Núcleo Accumbens/metabolismo , Recompensa , Sacarose/farmacologia
8.
Front Mol Neurosci ; 14: 762142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858138

RESUMO

The activation of chloride (Cl-)permeable gamma (γ)-aminobutyric acid type A(GABAA) receptors induces synaptic inhibition in mature and excitation in immature neurons. This developmental "switch" in GABA function controlled by its polarity depends on the postnatal decrease in intraneuronal Cl- concentration mediated by KCC2, a member of cation-chloride cotransporters (CCCs). The serine-threonine kinase WNK3 (With No Lysine [K]), is a potent regulator of all CCCs and is expressed in neurons. Here, we characterized the functions of WNK3 and its role in GABAergic signaling in cultured embryonic day 18 (E18) hippocampal neurons. We observed a decrease in WNK3 expression as neurons mature. Knocking down of WNK3 significantly hyperpolarized EGABA in mature neurons (DIV13-15) but had no effect on immature neurons (DIV6-8). This hyperpolarized EGABA in WNK3-deficient neurons was not due to the total expression of NKCC1 and KCC2, that remained unchanged. However, there was a reduction in phosphorylated KCC2 at the membrane, suggesting an increase in KCC2 chloride export activity. Furthermore, hyperpolarized EGABA observed in WNK3-deficient neurons can be reversed by the KCC2 inhibitor, VU024055, thus indicating that WNK3 acts through KCC2 to influence EGABA . Notably, WNK3 knockdown resulted in morphological changes in mature but not immature neurons. Electrophysiological characterization of WNK3-deficient mature neurons revealed reduced capacitances but increased intrinsic excitability and synaptic excitation. Hence, our study demonstrates that WNK3 maintains the "adult" GABAergic inhibitory tone in neurons and plays a role in the morphological development of neurons and excitability.

9.
Front Pharmacol ; 12: 708034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483916

RESUMO

Dysregulation of microRNA (miRNA) biogenesis is involved in drug addiction. Argonaute2 (Ago2), a specific splicing protein involved in the generation of miRNA, was found to be dysregulated in the nucleus accumbens (NAc) of methamphetamine (METH)-sensitized mice in our previous study. Here, we determined whether Ago2 in the NAc regulates METH sensitization in mice and identified Ago2-dependent miRNAs involved in this process. We found a gradual reduction in Ago2 expression in the NAc following repeated METH use. METH-induced hyperlocomotor activity in mice was strengthened by knocking down NAc neuronal levels of Ago2 but reduced by overexpressing Ago2 in NAc neurons. Surprisingly, miR-3068-5p was upregulated following overexpression of Ago2 and downregulated by silencing Ago2 in the NAc. Knocking down miR-3068-5p, serving as an Ago2-dependent miRNA, strengthened the METH sensitization responses in mice. These findings demonstrated that dysregulated Ago2 in neurons in the NAc is capable of regulating METH sensitization and suggested a potential role of Ago2-dependent miR-3068-5p in METH sensitization.

10.
Addict Biol ; 26(1): e12881, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32058631

RESUMO

Methamphetamine (METH) -induced behavioral sensitization depends on long-term neuroplasticity in the mesolimbic dopamine system, especially in the nucleus accumbens (NAc). miR-128, a brain enriched miRNA, was found to have abilities in regulating neuronal excitability and formation of fear-extinction memory. Here, we aim to identify the role of miR-128 on METH-induced locomotor sensitization of male mice. We identified a significant increase of miR-128 in the NAc of mice upon repeated-intermittent METH exposure but not acute METH administration. Microinjection of adeno-associated virus (AAV)-miR-128 over-expression and inhibition constructs into the NAc of mice resulted in enhanced METH-induced locomotor sensitization and attenuated effects of METH respectively. Isobaric tags for relative and absolute quantification (iTRAQ) technology and ingenuity pathway analysis (IPA) were carried out to uncover the potential molecular mechanisms underlying miR-128-regulated METH sensitization. Differentially expressed proteins, including 25 potential targets for miR-128 were annotated in regulatory pathways that modulate dendritic spines, synaptic transmission and neuritogenesis. Of which, Arf6, Cpeb3 and Nlgn1, were found to be participating in miR-128-regulated METH sensitization. Consistently, METH-induced abnormal changes of Arf6, Cpeb3 and Nlgn1 in the NAc of mice were also detected by qPCR and validated by western blot analysis. Thus, miR-128 may contribute to METH sensitization through controlling neuroplasticity. Our study suggested miR-128 was an important regulator of METH- induced sensitization and also provided the potential molecular networks of miR-128 in regulating METH-induced sensitization.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Metanfetamina/farmacologia , MicroRNAs/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Animais , Aprendizagem/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos
12.
13.
Sci Data ; 7(1): 178, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546682

RESUMO

A vast amount of public RNA-sequencing datasets have been generated and used widely to study transcriptome mechanisms. These data offer precious opportunity for advancing biological research in transcriptome studies such as alternative splicing. We report the first large-scale integrated analysis of RNA-Seq data of splicing factors for systematically identifying key factors in diseases and biological processes. We analyzed 1,321 RNA-Seq libraries of various mouse tissues and cell lines, comprising more than 6.6 TB sequences from 75 independent studies that experimentally manipulated 56 splicing factors. Using these data, RNA splicing signatures and gene expression signatures were computed, and signature comparison analysis identified a list of key splicing factors in Rett syndrome and cold-induced thermogenesis. We show that cold-induced RNA-binding proteins rescue the neurite outgrowth defects in Rett syndrome using neuronal morphology analysis, and we also reveal that SRSF1 and PTBP1 are required for energy expenditure in adipocytes using metabolic flux analysis. Our study provides an integrated analysis for identifying key factors in diseases and biological processes and highlights the importance of public data resources for identifying hypotheses for experimental testing.


Assuntos
Fatores de Processamento de RNA , RNA-Seq , Adipócitos/metabolismo , Processamento Alternativo , Animais , Linhagem Celular , Temperatura Baixa , Conjuntos de Dados como Assunto , Ribonucleoproteínas Nucleares Heterogêneas/genética , Camundongos , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Síndrome de Rett/genética , Fatores de Processamento de Serina-Arginina/genética , Termogênese/genética , Transcriptoma
14.
Neural Regen Res ; 15(4): 573-585, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31638079

RESUMO

Extracellular matrix (ECM) influences cell differentiation through its structural and biochemical properties. In nervous system, neuronal behavior is influenced by these ECMs structures which are present in a meshwork, fibrous, or tubular forms encompassing specific molecular compositions. In addition to contact guidance, ECM composition and structures also exert its effect on neuronal differentiation. This short report reviewed the native ECM structure and composition in central nervous system and peripheral nervous system, and their impact on neural regeneration and neuronal differentiation. Using topographies, stem cells have been differentiated to neurons. Further, focussing on engineered biomimicking topographies, we highlighted the role of anisotropic topographies in stem cell differentiation to neurons and its recent temporal application for efficient neuronal differentiation.

15.
Curr Opin Genet Dev ; 56: 61-68, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31465935

RESUMO

Small GTPases are known to have pivotal roles in intracellular trafficking, and several members of the small GTPases superfamily such as Rab10 [1,2•], Rab11 [3-5], Rab34 [6•,7], Rab8 [3,8], Rab23 [9-12], RSG1 [13-15], Arl13b [16-22], and Arl6 [22,23] were recently reported to mediate primary cilia function and/or Hh signalling. Although these functions are implicated in diseases such as ciliopathies, the molecular basis underlying how these small GTPases mediate primary cilia-dependent Hh signalling and pathogenesis of ciliopathies warrants further investigations. Notably, Rab23 and Arl13b have been implicated in ciliopathy-associated human diseases and could regulate Hh signalling cascade in multifaceted manners. This review thus specifically discuss the roles of Rab23 and Arl13b in primary cilia of mammalian systems, their cilia-dependent and cilia-independent modulation of hedgehog signalling pathways and their implications in Carpenter Syndrome and Joubert Syndrome respectively.


Assuntos
Fatores de Ribosilação do ADP/genética , Ciliopatias/genética , Proteínas Hedgehog/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/genética , Cílios/genética , Predisposição Genética para Doença/genética , Humanos , Família Multigênica/genética , Transdução de Sinais/genética
16.
Methods Mol Biol ; 2011: 573-591, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31273722

RESUMO

Elucidating the functions of a particular gene is paramount to the understanding of how its dysfunction contributes to disease. This is especially important when the gene is implicated in multiple different disorders. One such gene is methyl-CpG-binding protein 2 (MECP2), which has been most prominently associated with the neurodevelopmental disorder Rett syndrome, as well as major neuropsychiatric disorders such as autism and schizophrenia. Being initially identified as a transcriptional regulator that modulates gene expression and subsequently also shown to be involved in other molecular events, dysfunction of the MeCP2 protein has the potential to affect many cellular processes. In this chapter, we will briefly review the functions of the MeCP2 protein and how its mutations are implicated in Rett syndrome and other neuropsychiatric disorders. We will further discuss about the mouse models that have been generated to specifically dissect the function of MeCP2 in different cell types and brain regions. It is envisioned that such thorough and targeted examination of MeCP2 functions can aid in enlightening the role that it plays in normal and dysfunctional physiological systems.


Assuntos
Transtornos Mentais/etiologia , Proteína 2 de Ligação a Metil-CpG/genética , Doenças do Sistema Nervoso/etiologia , Síndrome de Rett/etiologia , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Transtornos Mentais/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mutação , Fenótipo , Síndrome de Rett/metabolismo
17.
Methods Mol Biol ; 2011: 593-605, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31273723

RESUMO

The methyl-CpG-binding protein 2 (MECP2) gene has been implicated in multiple neuropsychiatric disorders such as autism and schizophrenia and, most notably, Rett syndrome (RTT). Mouse models of MeCP2 dysfunction that have been developed are thus important not only for examining the protein's contribution to RTT, but also for elucidating the etiologies of other MECP2-associated neuropsychiatric disorders. In this chapter, we present protocols for three behavioral assays for characterizing major functional domains of MeCP2 dysfunction-the open field test for measuring general locomotor activity and anxiety-like behavior, the three-chambered Crawley box test for assessing social preference and social novelty, and the rotarod assay for testing locomotor coordination. It is hoped that these information facilitate systematic characterization of mouse models that may aid in elucidating the role of MeCP2 in neurological disorders, as well as assessing the effects of putative mechanistic and therapeutic interventions.


Assuntos
Comportamento Animal , Transtornos Mentais/etiologia , Proteína 2 de Ligação a Metil-CpG/genética , Doenças do Sistema Nervoso/etiologia , Fenótipo , Síndrome de Rett/etiologia , Animais , Ansiedade , Modelos Animais de Doenças , Suscetibilidade a Doenças , Estudos de Associação Genética , Humanos , Locomoção , Transtornos Mentais/diagnóstico , Transtornos Mentais/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Mutação , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/metabolismo , Síndrome de Rett/diagnóstico , Síndrome de Rett/metabolismo
18.
Neural Regen Res ; 14(10): 1697-1698, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31169177
20.
Emerg Microbes Infect ; 8(1): 426-437, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30898036

RESUMO

The emergence of neurotropic Zika virus (ZIKV) raised a public health emergency of global concern. ZIKV can cross the placental barrier and infect foetal brains, resulting in microcephaly, but the pathogenesis of ZIKV is poorly understood. With recent findings reporting AXL as a type I interferon antagonist rather than an entry receptor, the exact entry mechanism remains unresolved. Here we report that cell surface sialic acid plays an important role in ZIKV infection. Removal of cell surface sialic acid by neuraminidase significantly abolished ZIKV infection in Vero cells and human induced-pluripotent stem cells-derived neural progenitor cells. Furthermore, knockout of the sialic acid biosynthesis gene encoding UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase resulted in significantly less ZIKV infection of both African and Asian lineages. Huh7 cells deficient in α2,3-linked sialic acid through knockout of ST3 ß-galactoside-α2,3-sialyltransferase 4 had significantly reduced ZIKV infection. Removal of membrane-bound, un-internalized virus with pronase treatment revealed the role of sialic acid in ZIKV internalization but not attachment. Sialyllactose inhibition studies showed that there is no direct interaction between sialic acid and ZIKV, implying that sialic acid could be mediating ZIKV-receptor complex internalization. Identification of α2,3-linked sialic acid as an important host factor for ZIKV internalization provides new insight into ZIKV infection and pathogenesis.


Assuntos
Ácido N-Acetilneuramínico/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Zika virus/fisiologia , Animais , Linhagem Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA