Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(9): 265, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615749

RESUMO

Transient receptor potential cation channel-6 (TRPC6) gene mutations cause familial focal segmental glomerulosclerosis (FSGS), which is inherited as an autosomal dominant disease. In patients with TRPC6-related FSGS, all mutations map to the N- or C-terminal TRPC6 protein domains. Thus far, the majority of TRPC6 mutations are missense resulting in increased or decreased calcium influx; however, the fundamental molecular mechanisms causing cell injury and kidney pathology are unclear. We report a novel heterozygous TRPC6 mutation (V691Kfs*) in a large kindred with no signs of FSGS despite a largely truncated TRPC6 protein. We studied the molecular effects of V691Kfs* TRPC6 mutant using the tridimensional cryo-EM structure of the tetrameric TRPC6 protein. The results indicated that V691 is localized at the pore-forming transmembrane region affecting the ion conduction pathway, and predicted that V691Kfs* causes closure of the ion-conducting pathway leading to channel inactivation. We assessed the impact of V691Kfs* and two previously reported TRPC6 disease mutants (P112Q and G757D) on calcium influx in cells. Our data show that the V691Kfs* fully inactivated the TRCP6 channel-specific calcium influx consistent with a complete loss-of-function phenotype. Furthermore, the V691Kfs* truncation exerted a dominant negative effect on the full-length TRPC6 proteins. In conclusion, the V691Kfs* non-functional truncated TRPC6 is not sufficient to cause FSGS. Our data corroborate recently characterized TRPC6 loss-of-function and gain-of-function mutants suggesting that one defective TRPC6 gene copy is not sufficient to cause FSGS. We underscore the importance of increased rather than reduced calcium influx through TRPC6 for podocyte cell death.


Assuntos
Glomerulosclerose Segmentar e Focal , Humanos , Glomerulosclerose Segmentar e Focal/genética , Canal de Cátion TRPC6/genética , Cálcio , Mutação com Perda de Função , Mutação/genética
2.
Pharmgenomics Pers Med ; 15: 765-773, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36004008

RESUMO

Purpose: Pharmacogenetic counselling is a complex task and requires the efforts of an interdisciplinary team, which cannot be implemented in most cases. Therefore, simple rules could help to minimize the risk of medications incompatible with each other or with frequent genetic variants. Patients and Methods: One hundred and eighty-four multi-morbid Caucasian patients suffering from side effects or inefficient therapy were enrolled and genotyped. Their medication was analyzed by a team of specialists using Drug-PIN® (medication support system) and individual recommendations for 34 drug classes were generated. Results: In each of the critical drug classes, 50% of the drugs cannot be recommended to be prescribed in typical drug cocktails. PPIs and SSRI/SNRIs represent the most critical drug classes without showing a single favorable drug. Among the well-tolerated drugs (not recommended for less than 5% of the patients) are metamizole, celecoxib, olmesartan and famotidine. For each drug class, a ranking of active ingredients according to their suitability is presented. Conclusion: Genotyping and its profound analysis are not available in many settings today. The consideration of frequent alterations of metabolic elimination routes and drug-drug-gene interactions by using simple rankings can help to avoid many incompatibilities, side effects and inefficient therapies.

3.
Biomed Pharmacother ; 144: 112315, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34656056

RESUMO

AIM OF THE STUDY: Botanicals used in Traditional Chinese Medicine (TCM) are a rich source for drug discovery and provide models for multi-component drug development. To facilitate the studies of the actions of TCM drugs and expand their applications, a comprehensive database is urgently required. METHODS: One online resource connects all the relevant data from multiple scientific sources and languages. Drug information from published TCM databases and the official Chinese Pharmacopoeia as well as specialized meta-websites such as Kew's Medicinal Plant Names Service was integrated on a higher level. RESULTS: Our database, SuperTCM, covers the aspects of TCM derived from medicinal plants, encompassing pharmacological recipes up to chemical compounds. It provides the information for 6516 TCM drugs (or "herbs") with 5372 botanical species, 55,772 active ingredients against 543 targets in 254 KEGG pathways associated with 8634 diseases. SuperTCM is freely available at http://tcm.charite.de/supertcm.


Assuntos
Bases de Dados Factuais , Medicamentos de Ervas Chinesas/uso terapêutico , Linguística , Materia Medica/uso terapêutico , Medicina Tradicional Chinesa , Farmacologia em Rede , Integração de Sistemas , Animais , Bases de Dados de Compostos Químicos , Bases de Dados de Produtos Farmacêuticos , Medicamentos de Ervas Chinesas/efeitos adversos , Humanos , Classificação Internacional de Doenças , Materia Medica/efeitos adversos , Farmacopeias como Assunto
4.
Pharmgenomics Pers Med ; 14: 955-962, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385834

RESUMO

PURPOSE: Inefficacy and safety concerns are main medications' problems, especially in the case of poly-therapies, when drug-drug interactions may alter the expected drug disposition. Ongoing efforts are aimed to establish drug selection processes aimed to preemptive evaluation of a plethora of factors affecting patient's specific drug response, including pharmacogenomic markers, in order to minimize prescription of improper medications. In previous years, we established at the University Hospital Sant'Andrea of Rome, Italy, a Precision Medicine Service based on a multi-disciplinary experts' team. The team is in charge to produce a drug therapy counselling report, including pharmacogenomic, pharmacokinetic and pharmacodynamic considerations. In this study, we aimed to evaluate the performance of this established "manual" process of therapy selection with a novel bioinformatic tool, the Drug-PIN system. PATIENTS AND METHODS: A total of 200 patients diagnosed with Major Depressive Disorders or a depressive episode in Bipolar Disorder, with at least three previous failed treatments, who underwent pharmacogenomic profiling and therapy counselling in the Sant'Andrea Hospital from 2017 to 2020. The baseline poly-therapy of these patients was re-evaluated and optimized by Drug-PIN. Results of the Drug-PIN poly-therapy evaluation/optimization were compared with the results of the original poly-therapy evaluation/optimization by therapy counselling. To compare the results between the two processes, the risk associated with each poly-therapy was classified as low, moderate, or high. RESULTS: The number of baseline poly-therapies classified in low-, moderate- or high-risk did not change significantly between manual system or Drug-PIN system. As the counselling process, also the Drug-PIN system produces a significant decrease in the predicted treatment-associated risk. CONCLUSION: Drug-PIN substantially replicates the output of the counselling process, allowing a substantial reduction in the time needed for therapy evaluation. Availability of an effective bioinformatic tool for proper drug selection is expected to exponentially increase the actuation of targeted therapy strategies.

5.
Cancer Lett ; 509: 105-114, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33848518

RESUMO

We recently identified Galectin-1 (Gal-1), a ß-galactoside-binding lectin, as a novel immune regulator in neuroblastoma (NB). Here, we characterized the tolerogenic function of Gal-1 within the CD8+ T cell compartment and further evaluated its relevance as an antigen for effective DNA vaccination against NB in a mouse model. NB cells with Gal-1 knockdown (NXS-2L) exhibited significantly reduced tumor growth compared to NXS-2 NB cells. Administration of anti-CD8 antibodies prevented this antitumor effect, with primary tumor growth comparable to that from Gal-1 (G1)-sufficient NB cells. Peptide epitope screening with online databases and in silico docking experiments predicted the sequences "FDQADLTI" (#1), "GDFKIKCV" (#2), and "AHGDANTI" (#3) to have superior H2-KK binding affinities and "KFPNRLNM" (#4), "DGDFKIKCV" (#5), and "LGKDSNNL" (#6) to have superior H2-DD binding affinities. Minigenes encoding G1-KK (#1-#2-#3), G1-DD (#4-#5-#6) and the triplet with the highest affinity, G1-H (#1-#2-#4), were generated and cloned into a ubiquitin-containing plasmid (pU). Mice receiving pU-G1-KK or pU-G-1H presented a reduction in the s.c. tumor volume and weight of up to 80% compared to control mice; this reduction was associated with increased cytotoxicity of isolated splenocytes from vaccinated animals. Vaccination with pUG1-DD showed a lower capability to suppress primary tumor progression. In conclusion, Gal-1 expression by NB negatively regulates CD8+ T cells. Vaccination with DNA plasmids encoding Gal-1 epitopes overcomes immune escape, enhances CD8+ T cell-dependent immunity and displays effective antitumor activity against NB.


Assuntos
Vacinas Anticâncer/farmacologia , Galectina 1/imunologia , Epitopos Imunodominantes , Neuroblastoma/tratamento farmacológico , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica/efeitos dos fármacos , Mapeamento de Epitopos , Feminino , Galectina 1/genética , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Neuroblastoma/genética , Neuroblastoma/imunologia , Carga Tumoral/efeitos dos fármacos , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral , Vacinação , Vacinas de DNA/farmacologia
6.
Nucleic Acids Res ; 49(D1): D1373-D1380, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33196798

RESUMO

The development of new drugs for diseases is a time-consuming, costly and risky process. In recent years, many drugs could be approved for other indications. This repurposing process allows to effectively reduce development costs, time and, ultimately, save patients' lives. During the ongoing COVID-19 pandemic, drug repositioning has gained widespread attention as a fast opportunity to find potential treatments against the newly emerging disease. In order to expand this field to researchers with varying levels of experience, we made an effort to open it to all users (meaning novices as well as experts in cheminformatics) by significantly improving the entry-level user experience. The browsing functionality can be used as a global entry point to collect further information with regards to small molecules (∼1 million), side-effects (∼110 000) or drug-target interactions (∼3 million). The drug-repositioning tab for small molecules will also suggest possible drug-repositioning opportunities to the user by using structural similarity measurements for small molecules using two different approaches. Additionally, using information from the Promiscuous 2.0 Database, lists of candidate drugs for given indications were precomputed, including a section dedicated to potential treatments for COVID-19. All the information is interconnected by a dynamic network-based visualization to identify new indications for available compounds. Promiscuous 2.0 is unique in its functionality and is publicly available at http://bioinformatics.charite.de/promiscuous2.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Biologia Computacional/métodos , Bases de Dados de Produtos Farmacêuticos , Reposicionamento de Medicamentos/estatística & dados numéricos , SARS-CoV-2/efeitos dos fármacos , COVID-19/epidemiologia , COVID-19/virologia , Curadoria de Dados/métodos , Reposicionamento de Medicamentos/métodos , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Pandemias , SARS-CoV-2/fisiologia
7.
Front Microbiol ; 11: 557253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101231

RESUMO

Microorganisms are diverse in their genome sequences and subsequently in their encoded metabolic pathways, which enabled them to adapt to numerous environmental conditions. They produce thousands of small molecules, many of which are volatiles in nature and play important roles in signaling in intra- and inter-species to kingdom and domain interactions, survival, or virulence. Many of these compounds have been studied, characterized, and organized in the mVOC 2.0 database. However, such dataset has not been investigated comprehensively in terms of its phylogeny to determine key volatile markers for certain taxa. It was hypothesized that some of the volatiles described in the mVOC 2.0 database could function as a phylogenetic signal since their production is conserved among certain taxa within the microbial evolutionary tree. Our meta-analysis revealed that some volatiles were produced by a large number of bacteria but not in fungal genera such as dimethyl disulfide, acetic acid, 2-nonanone, dimethyl trisulfide, 2-undecanone, isovaleric acid, 2-tridecanone, propanoic acid, and indole (common bacterial compounds). In contrast, 1-octen-3-ol, 3-octanone, and 2-pentylfuran (common fungal compounds) were produced primarily by fungal genera. Such chemical information was further confirmed by investigating genomic data of publicly available databases revealing that bacteria or fungi harbor gene families involved in these volatiles' biosynthesis. Our phylogenetic signal testing identified 61 volatiles with a significant phylogenetic signal as demonstrated by phylogenetic D statistic P-value < 0.05. Thirty-three volatiles were phylogenetically conserved in the bacterial domain (e.g., cyclocitral) compared to 17 volatiles phylogenetically conserved in the fungal kingdom (e.g., aristolochene), whereas 11 volatiles were phylogenetically conserved in genera from both bacteria and fungi (e.g., geosmin). These volatiles belong to different chemical classes such as heterocyclic compounds, long-chain fatty acids, sesquiterpenoids, and aromatics. The performed approaches serve as a starting point to investigate less explored volatiles with potential roles in signaling, antimicrobial therapy, or diagnostics.

8.
Mol Oncol ; 14(4): 686-703, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32037720

RESUMO

Platinum-based compounds remain a well-established chemotherapy for cancer treatment despite their adverse effects which substantially restrict the therapeutic windows of the drugs. Both the cell type-specific toxicity and the clinical responsiveness of tumors have been associated with mechanisms that alter drug entry and export. We sought to identify pharmacological agents that promote cisplatin (CP) efficacy by augmenting the levels of drug-induced DNA lesions in malignant cells and simultaneously protecting normal tissues from accumulating such damage and from functional loss. Formation and persistence of platination products in the DNA of individual nuclei were measured in drug-exposed cell lines, in primary human tumor cells and in tissue sections using an immunocytochemical method. Using a mouse model of CP-induced toxicity, the antihistaminic drug diphenhydramine (DIPH) and two methylated derivatives decreased DNA platination in normal tissues and also ameliorated nephrotoxicity, ototoxicity, and neurotoxicity. In addition, DIPH sensitized multiple cancer cell types, particularly ovarian cancer cells, to CP by increasing intracellular uptake, DNA platination, and/or apoptosis in cell lines and in patient-derived primary tumor cells. Mechanistically, DIPH diminished transport capacity of CP efflux pumps MRP2, MRP3, and MRP5 particularly in its C2+C6 bimethylated form. Overall, we demonstrate that DIPH reduces side effects of platinum-based chemotherapy and simultaneously inhibits key mechanisms of platinum resistance. We propose that measuring DNA platination after ex vivo exposure may predict the responsiveness of individual tumors to DIPH-like modulators.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Difenidramina/farmacologia , Antagonistas dos Receptores Histamínicos H1/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Animais , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/toxicidade , Adutos de DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia
9.
Naunyn Schmiedebergs Arch Pharmacol ; 391(8): 833-846, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29736621

RESUMO

Transient receptor potential (TRP) channels represent a superfamily of unselective cation channels that are subdivided into seven subfamilies based on their sequence homology and differences in gating and functional properties. Little is known about the molecular mechanisms of TRP channel regulation, particularly of the "canonical" TRP (TRPC) subfamily and their activation by polyunsaturated fatty acids (PUFAs). Here, we analyzed the structure-function relationship of Drosophila fruit fly TRPC channels. The primary aim was to uncover the molecular basis of PUFA sensitivity of Drosophila TRP-like (TRPL) and TRPgamma channels. Amino acid (aa) sequence alignment of the three Drosophila TRPC channels revealed 50 aa residues highly conserved in PUFA-sensitive TRPL and TRPgamma channels but not in the PUFA-insensitive TRP channel. Substitution of respective aa in TRPL by corresponding aa of TRP identified 18 residues that are necessary for PUFA-mediated activation of TRPL. Most aa positions are located within a stretch comprising transmembrane domains S2-S4, whereas six aa positions have been assigned to the proximal cytosolic C-terminus. Interestingly, residues I465 and S471 are required for activation by 5,8,11,14-eicosatetraynoic acid (ETYA) but not 5,8,11-eicosatriynoic acid (ETI). As proof of concept, we generated a PUFA-sensitive TRP channel by exchanging the corresponding aa from TRPL to TRP. Our study demonstrates a specific aa pattern in the transmembrane domains S2-S4 and the proximal C-terminus essential for TRP channel activation by PUFAs.


Assuntos
Proteínas de Drosophila/fisiologia , Ácidos Graxos Insaturados/farmacologia , Canais de Potencial de Receptor Transitório/fisiologia , Cálcio/fisiologia , Proteínas de Drosophila/genética , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida , Canais de Potencial de Receptor Transitório/genética
10.
Nucleic Acids Res ; 46(D1): D1137-D1143, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29140469

RESUMO

Regular monitoring of drug regulatory agency web sites and similar resources for information on new drug approvals and changes to legal status of marketed drugs is impractical. It requires navigation through several resources to find complete information about a drug as none of the publicly accessible drug databases provide all features essential to complement in silico drug discovery. Here, we propose SuperDRUG2 (http://cheminfo.charite.de/superdrug2) as a comprehensive knowledge-base of approved and marketed drugs. We provide the largest collection of drugs (containing 4587 active pharmaceutical ingredients) which include small molecules, biological products and other drugs. The database is intended to serve as a one-stop resource providing data on: chemical structures, regulatory details, indications, drug targets, side-effects, physicochemical properties, pharmacokinetics and drug-drug interactions. We provide a 3D-superposition feature that facilitates estimation of the fit of a drug in the active site of a target with a known ligand bound to it. Apart from multiple other search options, we introduced pharmacokinetics simulation as a unique feature that allows users to visualise the 'plasma concentration versus time' profile for a given dose of drug with few other adjustable parameters to simulate the kinetics in a healthy individual and poor or extensive metabolisers.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Aprovação de Drogas , Bases de Conhecimento , Marketing , Interações Medicamentosas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Internet , Preparações Farmacêuticas/química , Farmacocinética , Interface Usuário-Computador
11.
PLoS Biol ; 15(6): e2000784, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28570591

RESUMO

MACC1 (Metastasis Associated in Colon Cancer 1) is a key driver and prognostic biomarker for cancer progression and metastasis in a large variety of solid tumor types, particularly colorectal cancer (CRC). However, no MACC1 inhibitors have been identified yet. Therefore, we aimed to target MACC1 expression using a luciferase reporter-based high-throughput screening with the ChemBioNet library of more than 30,000 compounds. The small molecules lovastatin and rottlerin emerged as the most potent MACC1 transcriptional inhibitors. They remarkably inhibited MACC1 promoter activity and expression, resulting in reduced cell motility. Lovastatin impaired the binding of the transcription factors c-Jun and Sp1 to the MACC1 promoter, thereby inhibiting MACC1 transcription. Most importantly, in CRC-xenografted mice, lovastatin and rottlerin restricted MACC1 expression and liver metastasis. This is-to the best of our knowledge-the first identification of inhibitors restricting cancer progression and metastasis via the novel target MACC1. This drug repositioning might be of therapeutic value for CRC patients.


Assuntos
Acetofenonas/uso terapêutico , Antineoplásicos/uso terapêutico , Benzopiranos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Fatores de Transcrição/antagonistas & inibidores , Desacopladores/uso terapêutico , Acetofenonas/efeitos adversos , Acetofenonas/química , Acetofenonas/farmacologia , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzopiranos/efeitos adversos , Benzopiranos/química , Benzopiranos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Genes Reporter/efeitos dos fármacos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias Hepáticas Experimentais/prevenção & controle , Neoplasias Hepáticas Experimentais/secundário , Camundongos SCID , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Distribuição Aleatória , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequenas , Transativadores , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carga Tumoral/efeitos dos fármacos , Desacopladores/efeitos adversos , Desacopladores/química , Desacopladores/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Am Soc Nephrol ; 27(9): 2771-83, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26892346

RESUMO

FSGS is a CKD with heavy proteinuria that eventually progresses to ESRD. Hereditary forms of FSGS have been linked to mutations in the transient receptor potential cation channel, subfamily C, member 6 (TRPC6) gene encoding a nonselective cation channel. Most of these TRPC6 mutations cause a gain-of-function phenotype, leading to calcium-triggered podocyte cell death, but the underlying molecular mechanisms are unclear. We studied the molecular effect of disease-related mutations using tridimensional in silico modeling of tetrameric TRPC6. Our results indicated that G757 is localized in a domain forming a TRPC6-TRPC6 interface and predicted that the amino acid exchange G757D causes local steric hindrance and disruption of the channel complex. Notably, functional characterization of model interface domain mutants suggested a loss-of-function phenotype. We then characterized 19 human FSGS-related TRPC6 mutations, the majority of which caused gain-of-function mutations. However, five mutations (N125S, L395A, G757D, L780P, and R895L) caused a loss-of-function phenotype. Coexpression of wild-type TRPC6 and TRPC6 G757D, mimicking heterozygosity observed in patients, revealed a dominant negative effect of TRPC6 G757D. Our comprehensive analysis of human disease-causing TRPC6 mutations reveals loss of TRPC6 function as an additional concept of hereditary FSGS and provides molecular insights into the mechanism responsible for the loss-of-function phenotype of TRPC6 G757D in humans.


Assuntos
Glomerulosclerose Segmentar e Focal/genética , Mutação , Canais de Cátion TRPC/genética , Análise Mutacional de DNA , Glomerulosclerose Segmentar e Focal/fisiopatologia , Humanos , Canal de Cátion TRPC6
13.
Nucleic Acids Res ; 43(Database issue): D935-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25300487

RESUMO

Natural products play a significant role in drug discovery and development. Many topological pharmacophore patterns are common between natural products and commercial drugs. A better understanding of the specific physicochemical and structural features of natural products is important for corresponding drug development. Several encyclopedias of natural compounds have been composed, but the information remains scattered or not freely available. The first version of the Supernatural database containing ∼ 50,000 compounds was published in 2006 to face these challenges. Here we present a new, updated and expanded version of natural product database, Super Natural II (http://bioinformatics.charite.de/supernatural), comprising ∼ 326,000 molecules. It provides all corresponding 2D structures, the most important structural and physicochemical properties, the predicted toxicity class for ∼ 170,000 compounds and the vendor information for the vast majority of compounds. The new version allows a template-based search for similar compounds as well as a search for compound names, vendors, specific physical properties or any substructures. Super Natural II also provides information about the pathways associated with synthesis and degradation of the natural products, as well as their mechanism of action with respect to structurally similar drugs and their target proteins.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/toxicidade , Bases de Dados de Compostos Químicos , Produtos Biológicos/metabolismo , Análise por Conglomerados , Internet
14.
Biol Sex Differ ; 5: 7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904731

RESUMO

BACKGROUND: Searches for sex and gender-specific publications are complicated by the absence of a specific algorithm within search engines and by the lack of adequate archives to collect the retrieved results. We previously addressed this issue by initiating the first systematic archive of medical literature containing sex and/or gender-specific analyses. This initial collection has now been greatly enlarged and re-organized as a free user-friendly database with multiple functions: GenderMedDB (http://gendermeddb.charite.de). DESCRIPTION: GenderMedDB retrieves the included publications from the PubMed database. Manuscripts containing sex and/or gender-specific analysis are continuously screened and the relevant findings organized systematically into disciplines and diseases. Publications are furthermore classified by research type, subject and participant numbers. More than 11,000 abstracts are currently included in the database, after screening more than 40,000 publications. The main functions of the database include searches by publication data or content analysis based on pre-defined classifications. In addition, registrants are enabled to upload relevant publications, access descriptive publication statistics and interact in an open user forum. CONCLUSIONS: Overall, GenderMedDB offers the advantages of a discipline-specific search engine as well as the functions of a participative tool for the gender medicine community.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA