Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Mol Gastroenterol Hepatol ; 16(2): 243-261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37085137

RESUMO

BACKGROUND & AIMS: Alterations in mitochondrial morphology and function and increased oxidative stresses in hepatocytes are well established in nonalcoholic fatty liver disease (NAFLD). Patients can undergo lifestyle changes, especially in earlier NAFLD stages, to reverse disease-induced phenotypes on a gross level. Yet, little is known about whether mitochondrial function and injuries recover upon reversal. Thus, we elucidated this question and interplays between the cytoskeletal network and mitochondria in the development and reversal of steatosis. METHODS: We cultured primary human hepatocytes stably for 2 weeks and used free fatty acid supplementation to induce steatosis over 7 days and reversed steatosis by free fatty acid withdrawal over the next 7 days. We assessed cytoskeletal and mitochondrial morphologies using immunocytochemistry and confocal microscopy. We evaluated mitochondrial respiration and function via the Seahorse analyzer, in which we fully optimized reagent dosing specifically for human hepatocytes. RESULTS: During early steatosis, intracellular lipid droplets displaced microtubules altering mitochondrial distribution, and disrupted the F-actin network, leading to loss of bile canaliculi in steatotic hepatocytes. Basal mitochondrial respiration, maximum respiratory capacity, and resistance to H2O2-induced cell death also increased as an adaptative response. Upon reversal of steatosis, F-actin and bile canaliculi were restored in hepatocytes. Nevertheless, we observed an increase in elongated mitochondrial branches accompanied by decreases in α-tubulin expression, mitochondrial proton leak, and susceptibility to H2O2-induced cell death. CONCLUSIONS: Despite the restoration of cytoskeletons morphologically upon reversal of steatosis, the mitochondria in hepatocytes were impaired owing to early adaptative respiratory increase. Hepatocytes thus were highly predisposed to H2O2-induced cell death. These results indicate the persistence of potential health risks for recovering NAFLD patients.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Actinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Hepatócitos/metabolismo , Mitocôndrias/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo
2.
Biomed Pharmacother ; 146: 112377, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35062050

RESUMO

Drug-drug-interactions (DDIs) occur when a drug alters the metabolic rate, efficacy, and toxicity of concurrently used drugs. While almost 1 in 4 adults now use at least 3 concurrent prescription drugs in the United States, the Non-alcoholic fatty liver disease (NAFLD) prevalence has also risen over 25%. The effect of NALFD on DDIs is largely unknown. NAFLD is characterized by lipid vesicle accumulation in the liver, which can progress to severe steatohepatitis (NASH), fibrosis, cirrhosis, and hepatic carcinoma. The CYP450 enzyme family dysregulation in NAFLD, which might already alter the efficacy and toxicity of drugs, has been partially characterized. Nevertheless, the drug-induced dysregulation of CYP450 enzymes has not been studied in the fatty liver. These changes in enzymatic inducibility during NAFLD, when taking concurrent drugs, could cause unexpected fatalities through inadvertent DDIs. We have, thus, developed an in vitro model to investigate the CYP450 transcriptional regulation in NAFLD. Specifically, we cultured primary human hepatocytes in a medium containing free fatty acids, high glucose, and insulin for seven days. These cultures displayed intracellular macro-steatosis after 5 days and cytokine secretion resembling NAFLD patients. We further verified the model's dysregulation in the transcription of key CYP450 enzymes. We then exposed the NAFLD model to the drug inducers rifampicin, Omeprazole, and Phenytoin as activators of transcription factors pregnane X receptor (PXR), aryl hydrocarbon receptor (AHR) and constitutive androstane receptor (CAR), respectively. In the NAFLD model, Omeprazole maintained an expected induction of CYP1A1, however Phenytoin and Rifampicin showed elevated induction of CYP2B6 and CYP2C9 compared to healthy cultures. We, thus, conclude that the fatty liver could cause aggravated drug-drug interactions in NAFLD or NASH patients related to CYP2B6 and CYP2C9 enzymes.


Assuntos
Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Interações Medicamentosas , Hepatopatia Gordurosa não Alcoólica/metabolismo , Preparações Farmacêuticas/metabolismo , Estudos de Casos e Controles , Indução Enzimática , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
3.
Nanomedicine (Lond) ; 14(16): 2209-2226, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31179822

RESUMO

Aim: To develop a practical microfluidic 3D hepatocyte chip for hepatotoxicity testing of nanoparticles using proof of concept studies providing first results of the potential hepatotoxicity of superparamagnetic iron oxide nanoparticles (SPION) under microfluidic conditions. Methods: A microfluidic 3D hepatocyte chip with three material layers, which contains primary rat hepatocytes, has been fabricated and tested using different concentrations (50, 100 and 200 µg/ml) of SPION in 3-day (short-term) and 1-week (long-term) cultures. Results: Compared with standard well plates, the hepatocyte chip with flow provided comparable viability and significantly higher liver-specific functions, up to 1 week. In addition, the chip recapitulates the key physiological responses in the hepatotoxicity of SPION. Conclusion: Thus, the developed 3D hepatocyte chip is a robust and highly sensitive platform for investigating hepatotoxicity profiles of nanoparticles.


Assuntos
Técnicas de Cultura de Células/métodos , Hepatócitos/citologia , Microfluídica/métodos , Nanopartículas/química , Animais , Células Cultivadas , Feminino , Ratos , Ureia/metabolismo
4.
Sci Rep ; 9(1): 7377, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31089162

RESUMO

Poly(dimethylsiloxane) (PDMS) is likely the most popular material for microfluidic devices in lab-on-a-chip and other biomedical applications. However, the hydrophobicity of PDMS leads to non-specific adsorption of proteins and other molecules such as therapeutic drugs, limiting its broader use. Here, we introduce a simple method for preparing PDMS materials to improve hydrophilicity and decrease non-specific protein adsorption while retaining cellular biocompatibility, transparency, and good mechanical properties without the need for any post-cure surface treatment. This approach utilizes smart copolymers comprised of poly(ethylene glycol) (PEG) and PDMS segments (PDMS-PEG) that, when blended with PDMS during device manufacture, spontaneously segregate to surfaces in contact with aqueous solutions and reduce the hydrophobicity without any added manufacturing steps. PDMS-PEG-modified PDMS samples showed contact angles as low as 23.6° ± 1° and retained this hydrophilicity for at least twenty months. Their improved wettability was confirmed using capillary flow experiments. Modified devices exhibited considerably reduced non-specific adsorption of albumin, lysozyme, and immunoglobulin G. The modified PDMS was biocompatible, displaying no adverse effects when used in a simple liver-on-a-chip model using primary rat hepatocytes. This PDMS modification method can be further applied in analytical separations, biosensing, cell studies, and drug-related studies.


Assuntos
Dimetilpolisiloxanos/química , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Polímeros Responsivos a Estímulos/química , Animais , Células Cultivadas , Hepatócitos , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Polietilenoglicóis/química , Cultura Primária de Células , Ratos , Propriedades de Superfície
5.
J Sep Sci ; 42(5): 962-979, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30663856

RESUMO

In recent years, the use of organic polymer monolithic capillary columns in separation science has gained popularity due to the fact that they are easy to fabricate and do not require retaining frits. These materials have been applied in different fields including foods, proteomics, and pharmaceuticals. The interest in food analysis still needs to develop in order to increase the sensitivity towards micro/nano-scale food applications for food samples of < 5 µg (e.g., foodomics). In this regard, polymer monolithic capillary columns offer great separation capability in the food analytical separation science. We review the most important applications in food analysis using polymer monolithic capillary columns. In addition, several examples of the use of capillary separation methods combined with mass spectrometry detection in food analysis are summarized.


Assuntos
Análise de Alimentos , Compostos Orgânicos/química , Polímeros/química , Eletroforese Capilar
6.
Technology (Singap World Sci) ; 5(1): 1-12, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28695160

RESUMO

In the last decade microfabrication processes including rapid prototyping techniques have advanced rapidly and achieved a fairly mature stage. These advances have encouraged and enabled the use of microfluidic devices by a wider range of users with applications in biological separations and cell and organoid cultures. Accordingly, a significant current challenge in the field is controlling biomolecular interactions at interfaces and the development of novel biomaterials to satisfy the unique needs of the biomedical applications. Poly(dimethylsiloxane) (PDMS) is one of the most widely used materials in the fabrication of microfluidic devices. The popularity of this material is the result of its low cost, simple fabrication allowing rapid prototyping, high optical transparency, and gas permeability. However, a major drawback of PDMS is its hydrophobicity and fast hydrophobic recovery after surface hydrophilization. This results in significant nonspecific adsorption of proteins as well as small hydrophobic molecules such as therapeutic drugs limiting the utility of PDMS in biomedical microfluidic circuitry. Accordingly, here, we focus on recent advances in surface molecular treatments to prevent fouling of PDMS surfaces towards improving its utility and expanding its use cases in biomedical applications.

7.
J Chromatogr A ; 1396: 86-97, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25900740

RESUMO

Poly(3-chloro-2-hydroxypropyl methacrylate-co-ethylene dimethacrylate), poly(HPMA-Cl-co-EDMA) capillary monolith was proposed as a reactive starting material with tailoring flexibility for the preparation of monolithic stationary phases. The reactive capillary monolith was synthesized by free radical copolymerization of 3-chloro-2-hydroxypropyl methacrylate (HPMA-Cl) and ethylene dimethacrylate (EDMA). The mean pore size, the specific surface area and the permeability of poly(HPMA-Cl-co-EDMA) monoliths were controlled by adjusting porogen/monomer volume ratio, porogen composition and polymerization temperature. The porogen/monomer volume ratio was found as the most effective factor controlling the porous properties of poly(HPMA-Cl-co-EDMA) monolith. Triethanolamine (TEA-OH) functionalized polymethacrylate monoliths were prepared by using the reactive chloropropyl group of poly(HPMA-Cl-co-EDMA) monolith via one-pot and simple post-functionalization process. Poly(HPMA-Cl-co-EDMA) monolith reacted with TEA-OH was evaluated as a stationary phase in nano-hydrophilic interaction chromatography (nano-HILIC). Nucleotides, nucleosides and benzoic acid derivatives were satisfactorily separated with the plate heights up to 20µm. TEA-OH attached-poly(HPMA-Cl-co-EDMA) monolith showed a reproducible and stable retention behaviour in nano-HILIC runs. However, a decrease in the column performance (i.e. an increase in the plate height) was observed with the increasing retention factor. Hence "retention-dependent column efficiency" behaviour was shown for HILIC mode using the chromatographic data collected with the polymer based monolith synthesized.


Assuntos
Cromatografia Líquida/instrumentação , Ácidos Polimetacrílicos/química , Benzoatos/isolamento & purificação , Etanolaminas/química , Interações Hidrofóbicas e Hidrofílicas , Nucleosídeos/isolamento & purificação , Nucleotídeos/isolamento & purificação , Permeabilidade , Polimerização , Ácidos Polimetacrílicos/síntese química , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA