Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Signals Sens ; 14: 6, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993204

RESUMO

Background: Microarray is a sophisticated tool that concurrently analyzes the expression levels of thousands of genes, giving scientists an overview of DNA and RNA study. This procedure is divided into three stages: contact with biological samples, data extraction, and data analysis. Because expression levels are disclosed by the interplay of light with fluorescent markers, the data extraction stage relies on image processing methods. To extract quantitative information from the microarray image (MAI), four steps of preprocessing, gridding, segmentation, and intensity quantification are required. During the generation of MAIs, a large number of error-prone processes occur, leading to structural problems and reduced quality in the resulting data, affecting the identification of expressed genes. Methods: In this article, the first stage has been examined. In the preprocessing stage, the contrast of the images is first enhanced using the genetic algorithm, then the source noises that appear as small artifacts are removed using morphology, and finally, to confirm the effect of the contrast enhancement (CE) on the main stages of microarray data processing, gridding is checked on complementary deoxyribonucleic acid MAIs. Results: The comparison of the obtained results with an adaptive histogram equalization (AHE) and multi-decomposition histogram equalization (M-DHE) methods shows the superiority and efficiency of the proposed method. For example, the image contrast of the Genomic Medicine Research Center Laboratory dataset is 3.24, which is 42.91 with the proposed method and 13.48 and 32.40 with the AHE and M-DHE methods, respectively. Conclusions: The performance of the proposed methods for CE is evaluated on 3 databases and a general conclusion is obtained as to which CE method is more suitable for each dataset.

2.
Comput Biol Med ; 179: 108815, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986287

RESUMO

Predicting protein structure is both fascinating and formidable, playing a crucial role in structure-based drug discovery and unraveling diseases with elusive origins. The Critical Assessment of Protein Structure Prediction (CASP) serves as a biannual battleground where global scientists converge to untangle the intricate relationships within amino acid chains. Two primary methods, Template-Based Modeling (TBM) and Template-Free (TF) strategies, dominate protein structure prediction. The trend has shifted towards Template-Free predictions due to their broader sequence coverage with fewer templates. The predictive process can be broadly classified into contact map, binned-distance, and real-valued distance predictions, each with distinctive strengths and limitations manifested through tailored loss functions. We have also introduced revolutionary end-to-end, and all-atom diffusion-based techniques that have transformed protein structure predictions. Recent advancements in deep learning techniques have significantly improved prediction accuracy, although the effectiveness is contingent upon the quality of input features derived from natural bio-physiochemical attributes and Multiple Sequence Alignments (MSA). Hence, the generation of high-quality MSA data holds paramount importance in harnessing informative input features for enhanced prediction outcomes. Remarkable successes have been achieved in protein structure prediction accuracy, however not enough for what structural knowledge was intended to, which implies need for development in some other aspects of the predictions. In this regard, scientists have opened other frontiers for protein structural prediction. The utilization of subsampling in multiple sequence alignment (MSA) and protein language modeling appears to be particularly promising in enhancing the accuracy and efficiency of predictions, ultimately aiding in drug discovery efforts. The exploration of predicting protein complex structure also opens up exciting opportunities to deepen our knowledge of molecular interactions and design therapeutics that are more effective. In this article, we have discussed the vicissitudes that the scientists have gone through to improve prediction accuracy, and examined the effective policies in predicting from different aspects, including the construction of high quality MSA, providing informative input features, and progresses in deep learning approaches. We have also briefly touched upon transitioning from predicting single-chain protein structures to predicting protein complex structures. Our findings point towards promoting open research environments to support the objectives of protein structure prediction.


Assuntos
Conformação Proteica , Proteínas , Proteínas/química , Modelos Moleculares , Biologia Computacional/métodos , Humanos , Análise de Sequência de Proteína/métodos , Aprendizado Profundo , Bases de Dados de Proteínas
3.
Bioimpacts ; 11(2): 101-109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842280

RESUMO

Introduction: Riboswitches are short regulatory elements generally found in the untranslated regions of prokaryotes' mRNAs and classified into several families. Due to the binding possibility between riboswitches and antibiotics, their usage as engineered regulatory elements and also their evolutionary contribution, the need for bioinformatics tools of riboswitch detection is increasing. We have previously introduced an alignment independent algorithm for the identification of frequent sequential blocks in the families of riboswitches. Herein, we report the application of block location-based feature extraction strategy (BLBFE), which uses the locations of detected blocks on riboswitch sequences as features for classification of seed sequences. Besides, mono- and dinucleotide frequencies, k-mer, DAC, DCC, DACC, PC-PseDNC-General and SC-PseDNC-General methods as some feature extraction strategies were investigated. Methods: The classifiers of the Decision tree, KNN, LDA, and Naïve Bayes, as well as k-fold cross-validation, were employed for all methods of feature extraction to compare their performances based on the criteria of accuracy, sensitivity, specificity, and f-score performance measures. Results: The outcome of the study showed that the BLBFE strategy classified the riboswitches indicating 87.65% average correct classification rate (CCR). Moreover, the performance of the proposed feature extraction method was confirmed with average values of 94.31%, 85.01%, 95.45% and 85.38% for accuracy, sensitivity, specificity, and f-score, respectively. Conclusion: Our result approved the performance of the BLBFE strategy in the classification and discrimination of the riboswitch groups showing remarkable higher values of CCR, accuracy, sensitivity, specificity and f-score relative to previously studied feature extraction methods.

4.
Adv Pharm Bull ; 10(1): 97-105, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32002367

RESUMO

Purpose: Riboswitches are special non-coding sequences usually located in mRNAs' un-translated regions and regulate gene expression and consequently cellular function. Furthermore, their interaction with antibiotics has been recently implicated. This raises more interest in development of bioinformatics tools for riboswitch studies. Herein, we describe the development and employment of novel block location-based feature extraction (BLBFE) method for classification of riboswitches. Methods: We have already developed and reported a sequential block finding (SBF) algorithm which, without operating alignment methods, identifies family specific sequential blocks for riboswitch families. Herein, we employed this algorithm for 7 riboswitch families including lysine, cobalamin, glycine, SAM-alpha, SAM-IV, cyclic-di-GMP-I and SAH. Then the study was extended toward implementation of BLBFE method for feature extraction. The outcome features were applied in various classifiers including linear discriminant analysis (LDA), probabilistic neural network (PNN), decision tree and k-nearest neighbors (KNN) classifiers for classification of the riboswitch families. The performance of the classifiers was investigated according to performance measures such as correct classification rate (CCR), accuracy, sensitivity, specificity and f-score. Results: As a result, average CCR for classification of riboswitches was 87.87%. Furthermore, application of BLBFE method in 4 classifiers displayed average accuracies of 93.98% to 96.1%, average sensitivities of 76.76% to 83.61%, average specificities of 96.53% to 97.69% and average f-scores of 74.9% to 81.91%. Conclusion: Our results approved that the proposed method of feature extraction; i.e. BLBFE method; can be successfully used for classification and discrimination of the riboswitch families with high CCR, accuracy, sensitivity, specificity and f-score values.

5.
Bioimpacts ; 8(1): 13-22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713598

RESUMO

Introduction: Some non-coding RNAs have an important role in the regulation of gene expression and consequently cellular function. Riboswitches are examples of these regulatory RNAs. Riboswitches are classified into various families according to sequential and structural similarities. Methods: In this study, a block finder algorithm for identification of frequently appearing sequential blocks in five families of riboswitches from Rfam 12.0 database, without the use of alignment methods, was developed. Results: The developed program identified 21 frequently appearing blocks in five families of riboswitches. Conclusion: Comparison of the results of the proposed algorithm with those of sequential alignment methods revealed that our method can recognize most of the patterns present in conserved areas of individual riboswitch families and determine them as specific blocks, implying potential of the developed program as a platform for further studies and developments.

6.
J Med Signals Sens ; 4(4): 291-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25426433

RESUMO

Microarray data have an important role in identification and classification of the cancer tissues. Having a few samples of microarrays in cancer researches is always one of the most concerns which lead to some problems in designing the classifiers. For this matter, preprocessing gene selection techniques should be utilized before classification to remove the noninformative genes from the microarray data. An appropriate gene selection method can significantly improve the performance of cancer classification. In this paper, we use selective independent component analysis (SICA) for decreasing the dimension of microarray data. Using this selective algorithm, we can solve the instability problem occurred in the case of employing conventional independent component analysis (ICA) methods. First, the reconstruction error and selective set are analyzed as independent components of each gene, which have a small part in making error in order to reconstruct new sample. Then, some of the modified support vector machine (υ-SVM) algorithm sub-classifiers are trained, simultaneously. Eventually, the best sub-classifier with the highest recognition rate is selected. The proposed algorithm is applied on three cancer datasets (leukemia, breast cancer and lung cancer datasets), and its results are compared with other existing methods. The results illustrate that the proposed algorithm (SICA + υ-SVM) has higher accuracy and validity in order to increase the classification accuracy. Such that, our proposed algorithm exhibits relative improvements of 3.3% in correctness rate over ICA + SVM and SVM algorithms in lung cancer dataset.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA