Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773340

RESUMO

Acute and chronic coronary syndromes (ACS and CCS) are leading causes of mortality. Inflammation is considered a key pathogenic driver of these diseases, but the underlying immune states and their clinical implications remain poorly understood. Multiomic factor analysis (MOFA) allows unsupervised data exploration across multiple data types, identifying major axes of variation and associating these with underlying molecular processes. We hypothesized that applying MOFA to multiomic data obtained from blood might uncover hidden sources of variance and provide pathophysiological insights linked to clinical needs. Here we compile a longitudinal multiomic dataset of the systemic immune landscape in both ACS and CCS (n = 62 patients in total, n = 15 women and n = 47 men) and validate this in an external cohort (n = 55 patients in total, n = 11 women and n = 44 men). MOFA reveals multicellular immune signatures characterized by distinct monocyte, natural killer and T cell substates and immune-communication pathways that explain a large proportion of inter-patient variance. We also identify specific factors that reflect disease state or associate with treatment outcome in ACS as measured using left ventricular ejection fraction. Hence, this study provides proof-of-concept evidence for the ability of MOFA to uncover multicellular immune programs in cardiovascular disease, opening new directions for mechanistic, biomarker and therapeutic studies.

2.
Sci Adv ; 10(12): eadl1710, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517968

RESUMO

Neutrophils rapidly respond to inflammation and infection, but to which degree their functional trajectories after mobilization from the bone marrow are shaped within the circulation remains vague. Experimental limitations have so far hampered neutrophil research in human disease. Here, using innovative fixation and single-cell-based toolsets, we profile human and murine neutrophil transcriptomes and proteomes during steady state and bacterial infection. We find that peripheral priming of circulating neutrophils leads to dynamic shifts dominated by conserved up-regulation of antimicrobial genes across neutrophil substates, facilitating pathogen containment. We show the TLR4/NF-κB signaling-dependent up-regulation of canonical neutrophil activation markers like CD177/NB-1 during acute inflammation, resulting in functional shifts in vivo. Blocking de novo RNA synthesis in circulating neutrophils abrogates these plastic shifts and prevents the adaptation of antibacterial neutrophil programs by up-regulation of distinct effector molecules upon infection. These data underline transcriptional plasticity as a relevant mechanism of functional neutrophil reprogramming during acute infection to foster bacterial containment within the circulation.


Assuntos
Neutrófilos , Transcriptoma , Camundongos , Humanos , Animais , Neutrófilos/metabolismo , Proteômica , Inflamação/genética , Inflamação/metabolismo , Perfilação da Expressão Gênica
3.
Immunity ; 56(10): 2325-2341.e15, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37652021

RESUMO

Maladaptive, non-resolving inflammation contributes to chronic inflammatory diseases such as atherosclerosis. Because macrophages remove necrotic cells, defective macrophage programs can promote chronic inflammation with persistent tissue injury. Here, we investigated the mechanisms sustaining vascular macrophages. Intravital imaging revealed a spatiotemporal macrophage niche across vascular beds alongside mural cells (MCs)-pericytes and smooth muscle cells. Single-cell transcriptomics, co-culture, and genetic deletion experiments revealed MC-derived expression of the chemokines CCL2 and MIF, which actively preserved macrophage survival and their homeostatic functions. In atherosclerosis, this positioned macrophages in viable plaque areas, away from the necrotic core, and maintained a homeostatic macrophage phenotype. Disruption of this MC-macrophage unit via MC-specific deletion of these chemokines triggered detrimental macrophage relocalizing, exacerbated plaque necrosis, inflammation, and atheroprogression. In line, CCL2 inhibition at advanced stages of atherosclerosis showed detrimental effects. This work presents a MC-driven safeguard toward maintaining the homeostatic vascular macrophage niche.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Macrófagos/metabolismo , Aterosclerose/metabolismo , Placa Aterosclerótica/metabolismo , Quimiocinas/metabolismo , Inflamação/metabolismo , Necrose/metabolismo
4.
Blood ; 141(24): 2973-2992, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37018659

RESUMO

Platelets are not only the first responders in thrombosis and hemostasis but also central players in inflammation. Compared with platelets recruited to thrombi, immune-responsive platelets use distinct effector functions including actin-related protein complex 2/3-dependent migration along adhesive substrate gradients (haptotaxis), which prevents inflammatory bleeding and contributes to host defense. How platelet migration in this context is regulated on a cellular level is incompletely understood. Here, we use time-resolved morphodynamic profiling of individual platelets to show that migration, in contrast to clot retraction, requires anisotropic myosin IIa-activity at the platelet rear which is preceded by polarized actin polymerization at the front to initiate and maintain migration. Integrin GPIIb-dependent outside-in signaling via Gα13 coordinates polarization of migrating platelets to trigger tyrosine kinase c-Src/14-3-3ζ-dependent lamellipodium formation and functions independent of soluble agonists or chemotactic signals. Inhibitors of this signaling cascade, including the clinically used ABL/c-Src inhibitor dasatinib, interfere predominantly with the migratory capacity of platelets, without major impairment of classical platelet functions. In murine inflammation models, this translates to reduced migration of platelets visualized by 4D intravital microscopy, resulting in increased inflammation-associated hemorrhage in acute lung injury. Finally, platelets isolated from patients with leukemia treated with dasatinib who are prone to clinically relevant hemorrhage exhibit prominent migration defects, whereas other platelet functions are only partially affected. In summary, we define a distinct signaling pathway essential for migration and provide novel mechanistic insights explaining dasatinib-related platelet dysfunction and bleeding.


Assuntos
Plaquetas , Trombose , Humanos , Camundongos , Animais , Plaquetas/metabolismo , Proteínas 14-3-3/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Dasatinibe , Actinas/metabolismo , Trombose/metabolismo , Inflamação/metabolismo
5.
Blood ; 140(2): 121-139, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35472164

RESUMO

Impairment of vascular integrity is a hallmark of inflammatory diseases. We recently reported that single immune-responsive platelets migrate and reposition themselves to sites of vascular injury to prevent bleeding. However, it remains unclear how single platelets preserve vascular integrity once encountering endothelial breaches. Here we demonstrate by intravital microscopy combined with genetic mouse models that procoagulant activation (PA) of single platelets and subsequent recruitment of the coagulation cascade are crucial for the prevention of inflammatory bleeding. Using a novel lactadherin-based compound, we detect phosphatidylserine (PS)-positive procoagulant platelets in the inflamed vasculature. We identify exposed collagen as the central trigger arresting platelets and initiating subsequent PA in a CypD- and TMEM16F-dependent manner both in vivo and in vitro. Platelet PA promotes binding of the prothrombinase complex to the platelet membrane, greatly enhancing thrombin activity and resulting in fibrin formation. PA of migrating platelets is initiated by costimulation via integrin αIIbß3 (GPIIBIIIA)/Gα13-mediated outside-in signaling and glycoprotein VI signaling, leading to an above-threshold intracellular calcium release. This effectively targets the coagulation cascade to breaches of vascular integrity identified by patrolling platelets. Platelet-specific genetic loss of either CypD or TMEM16F as well as combined blockade of platelet GPIIBIIIA and glycoprotein VI reduce platelet PA in vivo and aggravate pulmonary inflammatory hemorrhage. Our findings illustrate a novel role of procoagulant platelets in the prevention of inflammatory bleeding and provide evidence that PA of patrolling platelet sentinels effectively targets and confines activation of coagulation to breaches of vascular integrity.


Assuntos
Plaquetas , Glicoproteínas da Membrana de Plaquetas , Animais , Plaquetas/metabolismo , Hemorragia/metabolismo , Camundongos , Ativação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo
6.
Nat Commun ; 13(1): 1018, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197461

RESUMO

The antiviral immune response to SARS-CoV-2 infection can limit viral spread and prevent development of pneumonic COVID-19. However, the protective immunological response associated with successful viral containment in the upper airways remains unclear. Here, we combine a multi-omics approach with longitudinal sampling to reveal temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients and associate specific immune trajectories with upper airway viral containment. We see a distinct systemic rather than local immune state associated with viral containment, characterized by interferon stimulated gene (ISG) upregulation across circulating immune cell subsets in non-pneumonic SARS-CoV2 infection. We report reduced cytotoxic potential of Natural Killer (NK) and T cells, and an immune-modulatory monocyte phenotype associated with protective immunity in COVID-19. Together, we show protective immune trajectories in SARS-CoV2 infection, which have important implications for patient prognosis and the development of immunomodulatory therapies.


Assuntos
COVID-19/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Assistência Ambulatorial , Citocinas/sangue , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Interferons/imunologia , Células Matadoras Naturais/imunologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Nasofaringe/imunologia , Nasofaringe/virologia , SARS-CoV-2/fisiologia , Linfócitos T/imunologia
7.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34403366

RESUMO

Neutrophils provide a critical line of defense in immune responses to various pathogens, inflicting self-damage upon transition to a hyperactivated, procoagulant state. Recent work has highlighted proinflammatory neutrophil phenotypes contributing to lung injury and acute respiratory distress syndrome (ARDS) in patients with coronavirus disease 2019 (COVID-19). Here, we use state-of-the art mass spectrometry-based proteomics and transcriptomic and correlative analyses as well as functional in vitro and in vivo studies to dissect how neutrophils contribute to the progression to severe COVID-19. We identify a reinforcing loop of both systemic and neutrophil intrinsic IL-8 (CXCL8/IL-8) dysregulation, which initiates and perpetuates neutrophil-driven immunopathology. This positive feedback loop of systemic and neutrophil autocrine IL-8 production leads to an activated, prothrombotic neutrophil phenotype characterized by degranulation and neutrophil extracellular trap (NET) formation. In severe COVID-19, neutrophils directly initiate the coagulation and complement cascade, highlighting a link to the immunothrombotic state observed in these patients. Targeting the IL-8-CXCR-1/-2 axis interferes with this vicious cycle and attenuates neutrophil activation, degranulation, NETosis, and IL-8 release. Finally, we show that blocking IL-8-like signaling reduces severe acute respiratory distress syndrome of coronavirus 2 (SARS-CoV-2) spike protein-induced, human ACE2-dependent pulmonary microthrombosis in mice. In summary, our data provide comprehensive insights into the activation mechanisms of neutrophils in COVID-19 and uncover a self-sustaining neutrophil-IL-8 axis as a promising therapeutic target in severe SARS-CoV-2 infection.


Assuntos
COVID-19/metabolismo , Interleucina-8/metabolismo , Pulmão/imunologia , Neutrófilos/imunologia , SARS-CoV-2 , Trombose/etiologia , Animais , COVID-19/complicações , COVID-19/patologia , Humanos , Pulmão/patologia , Camundongos , Ativação de Neutrófilo , Neutrófilos/patologia , Fenótipo , Trombose/patologia
8.
J Thromb Haemost ; 19(2): 574-581, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33217134

RESUMO

OBJECTIVE: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to severe pneumonia, but also thrombotic complications and non-pulmonary organ failure. Recent studies suggest intravascular neutrophil activation and subsequent immune cell-triggered immunothrombosis as a central pathomechanism linking the heterogenous clinical picture of coronavirus disease 2019 (COVID-19). We sought to study whether immunothrombosis is a pathognomonic factor in COVID-19 or a general feature of (viral) pneumonia, as well as to better understand its upstream regulation. APPROACH AND RESULTS: By comparing histopathological specimens of SARS-CoV-2 with influenza-affected lungs, we show that vascular neutrophil recruitment, NETosis, and subsequent immunothrombosis are typical features of severe COVID-19, but less prominent in influenza pneumonia. Activated neutrophils were typically found in physical association with monocytes. To explore this further, we combined clinical data of COVID-19 cases with comprehensive immune cell phenotyping and bronchoalveolar lavage fluid scRNA-seq data. We show that a HLADRlow CD9low monocyte population expands in severe COVID-19, which releases neutrophil chemokines in the lungs, and might in turn explain neutrophil expansion and pulmonary recruitment in the late stages of severe COVID-19. CONCLUSIONS: Our data underline an innate immune cell axis causing vascular inflammation and immunothrombosis in severe SARS-CoV-2 infection.


Assuntos
COVID-19/imunologia , Imunidade Inata , Influenza Humana/imunologia , Pulmão/imunologia , Neutrófilos/imunologia , Trombose/imunologia , Vasculite/imunologia , COVID-19/diagnóstico , COVID-19/virologia , Diagnóstico Diferencial , Interações Hospedeiro-Patógeno , Humanos , Influenza Humana/diagnóstico , Influenza Humana/virologia , Pulmão/patologia , Pulmão/virologia , Neutrófilos/virologia , Valor Preditivo dos Testes , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Trombose/virologia , Vasculite/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA