Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 15(7): e0009581, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34283827

RESUMO

A number of mathematical models have been developed for canine rabies to explore dynamics and inform control strategies. A common assumption of these models is that naturally acquired immunity plays no role in rabies dynamics. However, empirical studies have detected rabies-specific antibodies in healthy, unvaccinated domestic dogs, potentially due to immunizing, non-lethal exposure. We developed a stochastic model for canine rabies, parameterised for Laikipia County, Kenya, to explore the implications of different scenarios for naturally acquired immunity to rabies in domestic dogs. Simulating these scenarios using a non-spatial model indicated that low levels of immunity can act to limit rabies incidence and prevent depletion of the domestic dog population, increasing the probability of disease persistence. However, incorporating spatial structure and human response to high rabies incidence allowed the virus to persist in the absence of immunity. While low levels of immunity therefore had limited influence under a more realistic approximation of rabies dynamics, high rates of exposure leading to immunizing non-lethal exposure were required to produce population-level seroprevalences comparable with those reported in empirical studies. False positives and/or spatial variation may contribute to high empirical seroprevalences. However, if high seroprevalences are related to high exposure rates, these findings support the need for high vaccination coverage to effectively control this disease.


Assuntos
Imunidade Adaptativa , Surtos de Doenças/veterinária , Doenças do Cão/virologia , Raiva/veterinária , Animais , Doenças do Cão/epidemiologia , Doenças do Cão/imunologia , Cães , Quênia/epidemiologia , Modelos Biológicos , Raiva/epidemiologia , Raiva/imunologia , Raiva/virologia , Estudos Soroepidemiológicos
2.
PLoS Negl Trop Dis ; 14(2): e0007933, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32053628

RESUMO

Rabies has been a widely feared disease for thousands of years, with records of rabid dogs as early as ancient Egyptian and Mesopotamian texts. The reputation of rabies as being inevitably fatal, together with its ability to affect all mammalian species, contributes to the fear surrounding this disease. However, the widely held view that exposure to the rabies virus is always fatal has been repeatedly challenged. Although survival following clinical infection in humans has only been recorded on a handful of occasions, a number of studies have reported detection of rabies-specific antibodies in the sera of humans, domestic animals, and wildlife that are apparently healthy and unvaccinated. These 'seropositive' individuals provide possible evidence of exposure to the rabies virus that has not led to fatal disease. However, the variability in methods of detecting these antibodies and the difficulties of interpreting serology tests have contributed to an unclear picture of their importance. In this review, we consider the evidence for rabies-specific antibodies in healthy, unvaccinated individuals as indicators of nonlethal rabies exposure and the potential implications of this for rabies epidemiology. Our findings indicate that whilst there is substantial evidence that nonlethal rabies exposure does occur, serology studies that do not use appropriate controls and cutoffs are unlikely to provide an accurate estimate of the true prevalence of nonlethal rabies exposure.


Assuntos
Vírus da Raiva/imunologia , Raiva/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Humanos , Raiva/sangue , Raiva/virologia , Vacina Antirrábica/imunologia , Vírus da Raiva/genética , Vacinação
3.
Int J Parasitol Parasites Wildl ; 9: 104-111, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31011533

RESUMO

Variability in host resistance or tolerance to parasites is nearly ubiquitous, and is of key significance in understanding the evolutionary processes shaping host-parasite interactions. While ample research has been conducted on the genetics of parasite burden in livestock, relatively little has been done in free-living populations. Here, we investigate the sources of (co)variation in strongyle nematode faecal egg count (FEC) and body condition in Sable Island horses, a feral population in which parasite burden has previously been shown to negatively correlate with body condition. We used the quantitative genetic "animal model" to understand the sources of (co)variation in these traits, and tested for impacts of an important spatial gradient in habitat quality on the parameter estimates. Although FEC is significantly heritable (h 2 = 0.43 ±â€¯0.11), there was no evidence for significant additive genetic variation in body condition (h 2 = 0.04 ±â€¯0.07), and therefore there was also no significant genetic covariance between the two traits. The negative phenotypic covariance between these traits therefore does not derive principally from additive genetic effects. We also found that both FEC and body condition increase from east to west across the island, which indicates that the longitudinal environmental gradient is not responsible for the negative phenotypic association observed between these traits. There was also little evidence to suggest that quantitative genetic parameters were biased when an individual's location along the island's environmental gradient was not incorporated into the analysis. This research provides new and important insights into the genetic basis and adaptive potential of parasite resistance in free-living animals, and highlights the importance of environmental heterogeneity in modulating host-parasite interactions in wild vertebrate systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA