Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 9(1): 17620, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772273

RESUMO

Inactivation of the protein complex 'mechanistic target of rapamycin complex 1' (mTORC1) can increase the nuclear content of transcriptional regulators of metabolism and apoptosis. Previous studies established that nuclear import of signal transducer and activator of transcription-1 (STAT1) requires the mTORC1-associated adaptor karyopherin-α1 (KPNA1) when mTORC1 activity is reduced. However, the role of other mTORC1-interacting proteins in the complex, including 'protein kinase C delta' (PKCδ), have not been well characterized. In this study, we demonstrate that PKCδ, a STAT1 kinase, contains a functional 'target of rapamycin signaling' (TOS) motif that directs its interaction with mTORC1. Depletion of KPNA1 by RNAi prevented the nuclear import of PKCδ in cells exposed to the mTORC1 inhibitor rapamycin or amino acid restriction. Mutation of the TOS motif in PKCδ led to its loss of regulation by mTORC1 or karyopherin-α1, resulting in increased constitutive nuclear content. In cells expressing wild-type PKCδ, STAT1 activity and apoptosis were increased by rapamycin or interferon-ß. Those expressing the PKCδ TOS mutant exhibited increased STAT1 activity and apoptosis; further enhancement by rapamycin or interferon-ß, however, was lost. Therefore, the TOS motif in PKCδ is a novel structural mechanism by which mTORC1 prevents PKCδ and STAT1 nuclear import, and apoptosis.


Assuntos
Núcleo Celular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína Quinase C-delta/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Motivos de Aminoácidos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular , Humanos , Modelos Moleculares , Mutação de Sentido Incorreto , Mutação Puntual , Conformação Proteica , Mapeamento de Interação de Proteínas , Proteína Quinase C-delta/química , Proteína Quinase C-delta/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes/metabolismo , Proteína Regulatória Associada a mTOR/metabolismo , Fator de Transcrição STAT1/biossíntese , Alinhamento de Sequência , Sirolimo/farmacologia , alfa Carioferinas/antagonistas & inibidores , alfa Carioferinas/metabolismo
3.
Oncotarget ; 9(79): 34945-34971, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30405886

RESUMO

All presently known geroprotective chemical compounds of plant and microbial origin are caloric restriction mimetics because they can mimic the beneficial lifespan- and healthspan-extending effects of caloric restriction diets without the need to limit calorie supply. We have discovered a geroprotective chemical compound of mammalian origin, a bile acid called lithocholic acid, which can delay chronological aging of the budding yeast Saccharomyces cerevisiae under caloric restriction conditions. Here, we investigated mechanisms through which lithocholic acid can delay chronological aging of yeast limited in calorie supply. We provide evidence that lithocholic acid causes a stepwise development and maintenance of an aging-delaying cellular pattern throughout the entire chronological lifespan of yeast cultured under caloric restriction conditions. We show that lithocholic acid stimulates the aging-delaying cellular pattern and preserves such pattern because it specifically modulates the spatiotemporal dynamics of a complex cellular network. We demonstrate that this cellular network integrates certain pathways of lipid and carbohydrate metabolism, some intercompartmental communications, mitochondrial morphology and functionality, and liponecrotic and apoptotic modes of aging-associated cell death. Our findings indicate that lithocholic acid prolongs longevity of chronologically aging yeast because it decreases the risk of aging-associated cell death, thus increasing the chance of elderly cells to survive.

4.
Invest New Drugs ; 36(4): 718-725, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29607466

RESUMO

Prostate cancer is the second leading cause of cancer-related deaths in men in North America and there is an urgent need for development of more effective therapeutic treatments against this disease. We have recently shown that diindolylmethane (DIM) and several of its halogenated derivatives (ring-DIMs) induce death and protective autophagy in human prostate cancer cells. However, the in vivo efficacy of ring-DIMs and the use of autophagy inhibitors as adjuvant therapy have not yet been studied in vivo. The objective of this study was to determine these effects on tumor growth in nude CD-1 mice bearing bioluminescent androgen-independent PC-3 human prostate cancer cells. We found that chloroquine (CQ) significantly sensitized PC-3 cells to death in the presence of sub-toxic concentrations of DIM or 4,4'-Br2DIM in vitro. Moreover, a combination of DIM (10 mg/kg) and CQ (60 mg/kg), 3× per week, significantly decreased PC-3 tumor growth in vivo after 3 and 4 weeks of treatment. Furthermore, 4,4'-Br2DIM at 10 mg/kg (3× per week) significantly inhibited tumour growth after 4 weeks of treatment. Tissues microarray analysis showed that DIM alone or combined with CQ induced apoptosis marker TUNEL; the combination also significantly inhibited the cell proliferation marker Ki67. In conclusion, we have confirmed that DIM and 4,4'-Br2DIM are effective agents against prostate cancer in vivo and shown that inhibition of autophagy with CQ enhances the anticancer efficacy of DIM. Our results suggest that including selective autophagy inhibitors as adjuvants may improve the efficacy of existing and novel drug therapies against prostate cancer.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Brassicaceae/química , Indóis/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Verduras/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cloroquina/farmacologia , Xenoenxertos/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
5.
Cell Signal ; 40: 172-182, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28923415

RESUMO

3,3'-Diindolylmethane (DIM) and its synthetic halogenated derivatives 4,4'-Br2- and 7,7'-Cl2DIM (ring-DIMs) have recently been shown to induce protective autophagy in human prostate cancer cells. The mechanisms by which DIM and ring-DIMs induce autophagy have not been elucidated. As DIM is a mitochondrial ATP-synthase inhibitor, we hypothesized that DIM and ring-DIMs induce autophagy via alteration of intracellular AMP/ATP ratios and activation of AMP-activated protein kinase (AMPK) signaling in prostate cancer cells. We found that DIM and ring-DIMs induced autophagy was accompanied by increased autophagic vacuole formation and conversion of LC3BI to LC3BII in LNCaP and C42B human prostate cancer cells. DIM and ring-DIMs also induced AMPK, ULK-1 (unc-51-like autophagy activating kinase 1; Atg1) and acetyl-CoA carboxylase (ACC) phosphorylation in a time-dependent manner. DIM and the ring-DIMs time-dependently induced the oncogenic protein astrocyte-elevated gene 1 (AEG-1) in LNCaP and C42B cells. Downregulation of AEG-1 or AMPK inhibited DIM- and ring-DIM-induced autophagy. Pretreatment with ULK1 inhibitor MRT 67307 or siRNAs targeting either AEG-1 or AMPK potentiated the cytotoxicity of DIM and ring-DIMs. Interestingly, downregulation of AEG-1 induced senescence in cells treated with overtly cytotoxic concentrations of DIM or ring-DIMs and inhibited the onset of apoptosis in response to these compounds. In summary, we have identified a novel mechanism for DIM- and ring-DIM-induced protective autophagy, via induction of AEG-1 and subsequent activation of AMPK. Our findings could facilitate the development of novel drug therapies for prostate cancer that include selective autophagy inhibitors as adjuvants.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Moléculas de Adesão Celular/genética , Indóis/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Halogenação/efeitos dos fármacos , Humanos , Indóis/química , Masculino , Proteínas de Membrana , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
6.
Cancer Res ; 77(20): 5491-5502, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28830860

RESUMO

Lymphangioleiomyomatosis (LAM) is a progressive destructive neoplasm of the lung associated with inactivating mutations in the TSC1 or TSC2 tumor suppressor genes. Cell or animal models that accurately reflect the pathology of LAM have been challenging to develop. Here, we generated a robust human cell model of LAM by reprogramming TSC2 mutation-bearing fibroblasts from a patient with both tuberous sclerosis complex (TSC) and LAM (TSC-LAM) into induced pluripotent stem cells (iPSC), followed by selection of cells that resemble those found in LAM tumors by unbiased in vivo differentiation. We established expandable cell lines under smooth muscle cell (SMC) growth conditions that retained a patient-specific genomic TSC2+/- mutation and recapitulated the molecular and functional characteristics of pulmonary LAM cells. These include multiple indicators of hyperactive mTORC1 signaling, presence of specific neural crest and SMC markers, expression of VEGF-D and female sex hormone receptors, reduced autophagy, and metabolic reprogramming. Intriguingly, the LAM-like features of these cells suggest that haploinsufficiency at the TSC2 locus contributes to LAM pathology, and demonstrated that iPSC reprogramming and SMC lineage differentiation of somatic patient cells with germline mutations was a viable approach to generate LAM-like cells. The patient-derived SMC lines we have developed thus represent a novel cellular model of LAM that can advance our understanding of disease pathogenesis and develop therapeutic strategies against LAM. Cancer Res; 77(20); 5491-502. ©2017 AACR.


Assuntos
Linfangioleiomiomatose/genética , Linfangioleiomiomatose/patologia , Miócitos de Músculo Liso/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Proliferação de Células/fisiologia , Feminino , Haploinsuficiência , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia
7.
J Biol Chem ; 292(5): 1899-1909, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28011640

RESUMO

Autophagy involves the lysosomal degradation of cytoplasmic contents for regeneration of anabolic substrates during nutritional or inflammatory stress. Its initiation occurs rapidly after inactivation of the protein kinase mammalian target of rapamycin (mTOR) (or mechanistic target of rapamycin), leading to dephosphorylation of Unc-51-like kinase 1 (ULK1) and autophagosome formation. Recent studies indicate that mTOR can, in parallel, regulate the activity of stress transcription factors, including signal transducer and activator of transcription-1 (STAT1). The current study addresses the role of STAT1 as a transcriptional suppressor of autophagy genes and autophagic activity. We show that STAT1-deficient human fibrosarcoma cells exhibited enhanced autophagic flux as well as its induction by pharmacological inhibition of mTOR. Consistent with enhanced autophagy initiation, ULK1 mRNA and protein levels were increased in STAT1-deficient cells. By chromatin immunoprecipitation, STAT1 bound a putative regulatory sequence in the ULK1 5'-flanking region, the mutation of which increased ULK1 promoter activity, and rendered it unresponsive to mTOR inhibition. Consistent with an anti-apoptotic effect of autophagy, rapamycin-induced apoptosis and cytotoxicity were blocked in STAT1-deficient cells but restored in cells simultaneously exposed to the autophagy inhibitor ammonium chloride. In vivo, skeletal muscle ULK1 mRNA and protein levels as well as autophagic flux were significantly enhanced in STAT1-deficient mice. These results demonstrate a novel mechanism by which STAT1 negatively regulates ULK1 expression and autophagy.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/biossíntese , Autofagia/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Fator de Transcrição STAT1/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/fisiologia , Fator de Transcrição STAT1/genética , Sirolimo/farmacologia
8.
PeerJ ; 4: e2445, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27896021

RESUMO

Lithocholic acid (LCA) is a secondary bile acid that is selectively toxic to human neuroblastoma, breast and prostate cancer cells, whilst sparing normal cells. We previously reported that LCA inhibited cell viability and proliferation and induced apoptosis and necrosis of androgen-dependent LNCaP and androgen-independent PC-3 human prostate cancer cells. In the present study, we investigated the roles of endoplasmic reticulum (ER) stress, autophagy and mitochondrial dysfunction in the toxicity of LCA in PC-3 and autophagy deficient, androgen-independent DU-145 cells. LCA induced ER stress-related proteins, such as CCAAT-enhancer-binding protein homologous protein (CHOP), and the phosphorylation of eukaryotic initiation factor 2-alpha (p-eIF2α) and c-Jun N-terminal kinases (p-JNK) in both cancer cell-types. The p53 upregulated modulator of apoptosis (PUMA) and B cell lymphoma-like protein 11 (BIM) levels were decreased at overtly toxic LCA concentrations, although PUMA levels increased at lower LCA concentrations in both cell lines. LCA induced autophagy-related conversion of microtubule-associated proteins 1A/1B light chain 3B (LC3BI-LC3BII), and autophagy-related protein ATG5 in PC-3 cells, but not in autophagy-deficient DU-145 cells. LCA (>10 µM) increased levels of reactive oxygen species (ROS) concentration-dependently in PC-3 cells, whereas ROS levels were not affected in DU-145 cells. Salubrinal, an inhibitor of eIF2α dephosphorylation and ER stress, reduced LCA-induced CHOP levels slightly in PC-3, but not DU-145 cells. Salubrinal pre-treatment increased the cytotoxicity of LCA in PC-3 and DU-145 cells and resulted in a statistically significant loss of cell viability at normally non-toxic concentrations of LCA. The late-stage autophagy inhibitor bafilomycin A1 exacerbated LCA toxicity at subtoxic LCA concentrations in PC-3 cells. The antioxidant α-tocotrienol strongly inhibited the toxicity of LCA in PC-3 cells, but not in DU-145 cells. Collectively, although LCA induces autophagy and ER stress in PC-3 cells, these processes appear to be initially of protective nature and subsequently consequential to, but not critical for the ROS-mediated mitochondrial dysfunction and cytotoxicity of LCA. The full mechanism of LCA-induced mitochondrial dysfunction and cytotoxicity in the similarly sensitive DU-145 cells remains to be elucidated.

9.
Oncotarget ; 7(38): 61152-61165, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27458154

RESUMO

Lymphangioleiomyomatosis (LAM) is a destructive lung disease that can arise sporadically or in adults suffering from the tumor syndrome tuberous sclerosis complex (TSC). Microscopic tumors ('LAM nodules') in the lung interstitium arise from lymphatic invasion and metastasis. These consist of smooth muscle-like cells (LAM cells) that exhibit markers of neural crest differentiation and loss of the tumor suppressor protein 'tuberous sclerosis complex-2' (TSC2). Consistent with a neural phenotype, expression of the neuropeptide urotensin-II and its receptor was detected in LAM nodules. We hypothesized that loss of TSC2 sensitizes cells to the oncogenic effects of urotensin-II. TSC2-deficient Eker rat uterine leiomyoma ELT3 cells were stably transfected with empty vector or plasmid for the expression of TSC2. Urotensin-II increased cell viability and proliferation in TSC2-deficient cells, but not in TSC2-reconstituted cells. When exposed to urotensin-II, TSC2-deficient cells exhibited greater migration, anchorage-independent cell growth, and matrix invasion. The effects of urotensin-II on TSC2-deficient cells were blocked by the urotensin receptor antagonist SB657510, and accompanied by activation of Erk mitogen-activated protein kinase and focal adhesion kinase. Urotensin-II-induced proliferation and migration were reproduced in TSC2-deficient human angiomyolipoma cells, but not in those stably expressing TSC2. In a mouse xenograft model, SB657510 blocked the growth of established ELT3 tumors, reduced the number of circulating tumor cells, and attenuated the production of VEGF-D, a clinical biomarker of LAM. Urotensin receptor antagonists may be selective therapeutic agents for the treatment of LAM or other neural crest-derived neoplasms featuring loss of TSC2 or increased expression of the urotensin receptor.


Assuntos
Proteínas Supressoras de Tumor/genética , Urotensinas/farmacologia , Neoplasias Uterinas/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Quimiotaxia , Feminino , Mutação em Linhagem Germinativa , Humanos , Pneumopatias/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos SCID , Invasividade Neoplásica , Metástase Neoplásica , Fenótipo , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Sulfonamidas/farmacologia , Proteína 2 do Complexo Esclerose Tuberosa , Neoplasias Uterinas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Genes Cancer ; 6(5-6): 265-280, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26124925

RESUMO

We recently reported that novel ring-substituted analogs of 3,3'-diindolylmethane (ring-DIMs) induce apoptosis and necrosis in androgen-dependent and -independent prostate cancer cells. In this paper, we have focused on the mechanism(s) associated with ring-DIM-mediated cell death, and on identifying the specific intracellular target(s) of these compounds. The 4,4'- and 7,7'-dichloroDIMs and 4,4'- and 7,7'-dibromoDIMs induced the death of LNCaP, C42B and DU145 prostate cancer cells, but not that of immortalized normal human prostate epithelial (RWPE-1) cells. Ring-DIMs caused the early loss of mitochondrial membrane potential (MMP) and decreased mitochondrial ATP generation in prostate cancer cells. Cyclosporin A, an inhibitor of the mitochondrial permeability transition pore, inhibited ring-DIM-mediated cell death, and salubrinal, an inhibitor of ER stress, inhibited cell death mediated only by 4,4'-dihaloDIMs. We found that although salubrinal did not inhibit the onset of ER stress, it prevented 4,4'-dibromoDIM mediated loss of MMP. Salubrinal potentiated cell death in response to 7,7'-dihaloDIMs and DIM, and this effect concurred with increased loss of MMP. Using in silico 3-D docking affinity analysis, we identified Ca2+/calmodulin-dependent kinase II (CaMKII) as a potential direct target for the most toxic ring-DIM, 4,4'-dibromoDIM. An inhibitor of CaMKII, KN93, but not its inactive analog KN92, abrogated cell death mediated by 4,4'-dibromoDIM. The ring-DIMs induced ER stress and autophagy, but these processes were not necessary for ring-DIM-mediated cell death. Inhibition of autophagy with bafilomycin A1, 3-methyladenine or by LC3B gene silencing sensitized LNCaP and C42B, but not ATG5-deficient DU145 cells to ring-DIM- and DIM-mediated cell death. We propose that autophagy induced by the ring-DIMs and DIM has a cytoprotective function in prostate cancer cells.

12.
PeerJ ; 1: e122, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940835

RESUMO

Prostate cancer is a prevalent age-related disease in North America, accounting for about 15% of all diagnosed cancers. We have previously identified lithocholic acid (LCA) as a potential chemotherapeutic compound that selectively kills neuroblastoma cells while sparing normal human neurons. Now, we report that LCA inhibits the proliferation of androgen-dependent (AD) LNCaP prostate cancer cells and that LCA is the most potent bile acid with respect to inducing apoptosis in LNCaP as well as androgen-independent (AI) PC-3 cells, without killing RWPE-1 immortalized normal prostate epithelial cells. In LNCaP and PC-3 cells, LCA triggered the extrinsic pathway of apoptosis and cell death induced by LCA was partially dependent on the activation of caspase-8 and -3. Moreover, LCA increased cleavage of Bid and Bax, down-regulation of Bcl-2, permeabilization of the mitochondrial outer membrane and activation of caspase-9. The cytotoxic actions of LCA occurred despite the inability of this bile acid to enter the prostate cancer cells with about 98% of the nominal test concentrations present in the extracellular culture medium. With our findings, we provide evidence to support a mechanism of action underlying the broad anticancer activity of LCA in various human tissues.

13.
Dose Response ; 10(1): 75-82, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22423230

RESUMO

Various organisms (i.e., bacteria, fungi, plants and animals) within an ecosystem can synthesize and release into the environment certain longevity-extending small molecules. Here we hypothesize that these interspecies chemical signals can create xenohormetic, hormetic and cytostatic selective forces driving the ecosystemic evolution of longevity regulation mechanisms. In our hypothesis, following their release into the environment by one species of the organisms composing an ecosystem, such small molecules can activate anti-aging processes and/or inhibit pro-aging processes in other species within the ecosystem. The organisms that possess the most effective (as compared to their counterparts of the same species) mechanisms for sensing the chemical signals produced and released by other species and for responding to such signals by undergoing certain hormetic and/or cytostatic life-extending changes to their metabolism and physiology are expected to live longer then their counterparts within the ecosystem. Thus, the ability of a species of the organisms composing an ecosystem to undergo life-extending metabolic or physiological changes in response to hormetic or cytostatic chemical compounds released to the ecosystem by other species: 1) increases its chances of survival; 2) creates selective forces aimed at maintaining such ability; and 3) enables the evolution of longevity regulation mechanisms.

14.
Oncotarget ; 2(10): 761-82, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21992775

RESUMO

Aging is one of the major risk factors of cancer. The onset of cancer can be postponed by pharmacological and dietary anti-aging interventions. We recently found in yeast cellular models of aging that lithocholic acid (LCA) extends longevity. Here we show that, at concentrations that are not cytotoxic to primary cultures of human neurons, LCA kills the neuroblastoma (NB) cell lines BE(2)-m17, SK-n-SH, SK-n-MCIXC and Lan-1. In BE(2)-m17, SK-n-SH and SK-n-MCIXC cells, the LCA anti-tumor effect is due to apoptotic cell death. In contrast, the LCA-triggered death of Lan-1 cells is not caused by apoptosis. While low concentrations of LCA sensitize BE(2)-m17 and SK-n-MCIXC cells to hydrogen peroxide-induced apoptotic cell death controlled by mitochondria, these LCA concentrations make primary cultures of human neurons resistant to such a form of cell death. LCA kills BE(2)-m17 and SK-n-MCIXC cell lines by triggering not only the intrinsic (mitochondrial) apoptotic cell death pathway driven by mitochondrial outer membrane permeabilization and initiator caspase-9 activation, but also the extrinsic (death receptor) pathway of apoptosis involving activation of the initiator caspase-8. Based on these data, we propose a mechanism underlying a potent and selective anti-tumor effect of LCA in cultured human NB cells. Moreover, our finding that LCA kills cultured human breast cancer and rat glioma cells implies that it has a broad anti-tumor effect on cancer cells derived from different tissues and organisms.


Assuntos
Neoplasias da Mama/patologia , Detergentes/farmacologia , Glioma/patologia , Ácido Litocólico/farmacologia , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Caspase 3/metabolismo , Caspase 6/metabolismo , Células Cultivadas , Feminino , Glioma/tratamento farmacológico , Glioma/metabolismo , Histonas/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Immunoblotting , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neurônios/citologia , Fosforilação/efeitos dos fármacos , Ratos
15.
Aging (Albany NY) ; 2(8): 461-70, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20693605

RESUMO

We recently found that lithocholic acid (LCA), a bile acid, extends yeast longevity. Unlike mammals, yeast do not synthesize bile acids. We therefore propose that bile acids released into the environment by mammals may act as interspecies chemical signals providing longevity benefits to yeast and, perhaps, other species within an ecosystem.


Assuntos
Ecossistema , Ácido Litocólico , Longevidade , Mamíferos , Animais , Restrição Calórica , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citostáticos/metabolismo , Longevidade/fisiologia , Mamíferos/fisiologia , Mitocôndrias/fisiologia , Transdução de Sinais/fisiologia , Sirolimo/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Xenobióticos/metabolismo , Leveduras/fisiologia
16.
Aging (Albany NY) ; 2(7): 393-414, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20622262

RESUMO

In chronologically aging yeast, longevity can be extended by administering a caloric restriction (CR) diet or some small molecules. These life-extending interventions target the adaptable target of rapamycin (TOR) and cAMP/protein kinase A (cAMP/PKA) signaling pathways that are under the stringent control of calorie availability. We designed a chemical genetic screen for small molecules that increase the chronological life span of yeast under CR by targeting lipid metabolism and modulating housekeeping longevity pathways that regulate longevity irrespective of the number of available calories. Our screen identifies lithocholic acid (LCA) as one of such molecules. We reveal two mechanisms underlying the life-extending effect of LCA in chronologically aging yeast. One mechanism operates in a calorie availability-independent fashion and involves the LCA-governed modulation of housekeeping longevity assurance pathways that do not overlap with the adaptable TOR and cAMP/PKA pathways. The other mechanism extends yeast longevity under non-CR conditions and consists in LCA-driven unmasking of the previously unknown anti-aging potential of PKA. We provide evidence that LCA modulates housekeeping longevity assurance pathways by suppressing lipid-induced necrosis, attenuating mitochondrial fragmentation, altering oxidation-reduction processes in mitochondria, enhancing resistance to oxidative and thermal stresses, suppressing mitochondria-controlled apoptosis, and enhancing stability of nuclear and mitochondrial DNA.


Assuntos
Ácido Litocólico , Longevidade , Modelos Genéticos , Leveduras , Restrição Calórica , Senescência Celular/genética , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Metabolismo dos Lipídeos/genética , Ácido Litocólico/fisiologia , Longevidade/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Sirolimo/análise , Leveduras/fisiologia
17.
Biochem Soc Trans ; 37(Pt 5): 1050-5, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19754450

RESUMO

Growing evidence supports the view that LDs (lipid droplets) are dynamic organelles that can serve both as an intracellular signalling compartment and as an organizing platform orchestrating many vital processes in eukaryotic cells. It has become clear that the LDs-confined deposition and lipolytic degradation of neutral lipids define longevity in multicellular eukaryotic organisms and yeast. We summarize the evidence in support of the essential role that LDs play in longevity regulation and propose several molecular mechanisms by which these dynamic organellar compartments control the aging process in multicellular eukaryotes and yeast.


Assuntos
Metabolismo dos Lipídeos , Organelas/metabolismo , Envelhecimento/fisiologia , Animais , Células Eucarióticas/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia
18.
Exp Gerontol ; 44(9): 555-71, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19539741

RESUMO

Aging is a highly complex, multifactorial process. We use the yeast Saccharomyces cerevisiae as a model to study the mechanisms of cellular aging in multicellular eukaryotes. To address the inherent complexity of aging from a systems perspective and to build an integrative model of aging process, we investigated the effect of calorie restriction (CR), a low-calorie dietary regimen, on the metabolic history of chronologically aging yeast. We examined how CR influences the age-related dynamics of changes in the intracellular levels of numerous proteins and metabolites, carbohydrate and lipid metabolism, interorganellar metabolic flow, concentration of reactive oxygen species, mitochondrial morphology, essential oxidation-reduction processes in mitochondria, mitochondrial proteome, cardiolipin in the inner mitochondrial membrane, frequency of mitochondrial DNA mutations, dynamics of mitochondrial nucleoid, susceptibility to mitochondria-controlled apoptosis, and stress resistance. Based on the comparison of the metabolic histories of long-lived CR yeast and short-lived non-CR yeast, we propose that yeast define their long-term viability by designing a diet-specific pattern of metabolism and organelle dynamics prior to reproductive maturation. Thus, our data suggest that longevity in chronologically aging yeast is programmed by the level of metabolic capacity and organelle organization they developed, in a diet-specific fashion, prior to entry into a non-proliferative state.


Assuntos
Envelhecimento/fisiologia , Restrição Calórica , Regulação Fúngica da Expressão Gênica/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Humanos , Longevidade , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA