Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 190: 110509, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36306679

RESUMO

To determine the safety of using argon as a deuteron beam stopping material, the  40Ar(d,p)41Ar cross section was measured at average deuteron energies of 3.6 MeV, 5.5 MeV, and 7.0 MeV using an activation method. A 16-MeV deuteron beam produced by Lawrence Berkeley National Laboratory's 88-Inch Cyclotron was degraded to each energy by nickel foils and the front wall of an aluminum gas chamber. The reduced-energy deuterons were used to activate a sample of natAr gas. After each irradiation, the gas chamber's  41Ar activation was measured with a high-purity germanium detector. The cross sections measured were larger than a previous measurement by ∼40%.


Assuntos
Ciclotrons
2.
Rev Sci Instrum ; 87(11): 11D825, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910358

RESUMO

The high-fluence neutron spectrum produced by the National Ignition Facility (NIF) provides an opportunity to measure the activation of materials by fast-spectrum neutrons. A new large-volume gas-cell diagnostic has been designed and qualified to measure the activation of gaseous substances at the NIF. This in-chamber diagnostic is recoverable, reusable and has been successfully fielded. Data from the qualification of the diagnostic have been used to benchmark an Monte Carlo N-Particle Transport Code simulation describing the downscattered neutron spectrum seen by the gas cell. We present early results from the use of this diagnostic to measure the activation of natXe and discuss future work to study the strength of interactions between plasma and nuclei.

3.
Phys Rev Lett ; 108(16): 162503, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22680714

RESUMO

A new experimental technique is presented using proton-γ-γ correlations from (94)Mo(d,p)(95)Mo reactions which allows for the model-independent extraction of the photon strength function at various excitation energies using primary γ-ray decay from the quasicontinuum to individual low-lying levels. Detected particle energies provide the entrance excitation energies into the residual nucleus while γ-ray transitions from low-lying levels specify the discrete states being fed. Results strongly support the existence of the previously reported low-energy enhancement in the photon strength function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA