Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Blood ; 136(5): 533-541, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32457982

RESUMO

Deep vein thrombosis and pulmonary embolism, collectively defined as venous thromboembolism (VTE), are the third leading cause of cardiovascular death in the United States. Common genetic variants conferring increased varying degrees of VTE risk have been identified by genome-wide association studies (GWAS). Rare mutations in the anticoagulant genes PROC, PROS1 and SERPINC1 result in perinatal lethal thrombosis in homozygotes and markedly increased VTE risk in heterozygotes. However, currently described VTE variants account for an insufficient portion of risk to be routinely used for clinical decision making. To identify new rare VTE risk variants, we performed a whole-exome study of 393 individuals with unprovoked VTE and 6114 controls. This study identified 4 genes harboring an excess number of rare damaging variants in patients with VTE: PROS1, STAB2, PROC, and SERPINC1. At STAB2, 7.8% of VTE cases and 2.4% of controls had a qualifying rare variant. In cell culture, VTE-associated variants of STAB2 had a reduced surface expression compared with reference STAB2. Common variants in STAB2 have been previously associated with plasma von Willebrand factor and coagulation factor VIII levels in GWAS, suggesting that haploinsufficiency of stabilin-2 may increase VTE risk through elevated levels of these procoagulants. In an independent cohort, we found higher von Willebrand factor levels and equivalent propeptide levels in individuals with rare STAB2 variants compared with controls. Taken together, this study demonstrates the utility of gene-based collapsing analyses to identify loci harboring an excess of rare variants with functional connections to a complex thrombotic disease.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Predisposição Genética para Doença/genética , Tromboembolia Venosa/genética , Adulto , Feminino , Genótipo , Humanos , Masculino , Mutação , Tromboembolia Venosa/sangue , Sequenciamento do Exoma/métodos , Fator de von Willebrand/metabolismo
2.
Genes Dev ; 32(23-24): 1550-1561, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463902

RESUMO

Self-renewal genes maintain stem cells in an undifferentiated state by preventing the commitment to differentiate. Robust inactivation of self-renewal gene activity following asymmetric stem cell division allows uncommitted stem cell progeny to exit from an undifferentiated state and initiate the commitment to differentiate. Nonetheless, how self-renewal gene activity at mRNA and protein levels becomes synchronously terminated in uncommitted stem cell progeny is unclear. We demonstrate that a multilayered gene regulation system terminates self-renewal gene activity at all levels in uncommitted stem cell progeny in the fly neural stem cell lineage. We found that the RNA-binding protein Brain tumor (Brat) targets the transcripts of a self-renewal gene, deadpan (dpn), for decay by recruiting the deadenylation machinery to the 3' untranslated region (UTR). Furthermore, we identified a nuclear protein, Insensible, that complements Cullin-mediated proteolysis to robustly inactivate Dpn activity by limiting the level of active Dpn through protein sequestration. The synergy between post-transcriptional and transcriptional control of self-renewal genes drives timely exit from the stem cell state in uncommitted progenitors. Our proposed multilayered gene regulation system could be broadly applicable to the control of exit from stemness in all stem cell lineages.


Assuntos
Divisão Celular/genética , Autorrenovação Celular/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Neurais/citologia , Regiões 3' não Traduzidas/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Inativação Gênica , Proteínas Nucleares/metabolismo , Células-Tronco/citologia
3.
Development ; 141(7): 1453-64, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24598157

RESUMO

Cancer stem cells likely survive chemotherapy or radiotherapy by acquiring mutations that inactivate the endogenous apoptotic machinery or by cycling slowly. Thus, knowledge about the mechanisms linking the activation of an alternative cell death modality and the cell cycle machinery could have a transformative impact on the development of new cancer therapies, but the mechanisms remain completely unknown. We investigated the regulation of alternative cell death in Drosophila larval brain neural stem cells (neuroblasts) in which apoptosis is normally repressed. From a screen, we identified two novel loss-of-function alleles of the Cdc20/fizzy (fzy) gene that lead to premature brain neuroblast loss without perturbing cell proliferation in other diploid cell types. Fzy is an evolutionarily conserved regulator of anaphase promoting complex/cyclosome (APC/C). Neuroblasts carrying the novel fzy allele or exhibiting reduced APC/C function display hallmarks of necrosis. By contrast, neuroblasts overexpressing the non-degradable form of canonical APC/C substrates required for cell cycle progression undergo mitotic catastrophe. These data strongly suggest that Fzy can elicit a novel pro-survival function of APC/C by suppressing necrosis. Neuroblasts experiencing catastrophic cellular stress, or overexpressing p53, lose Fzy expression and undergo necrosis. Co-expression of fzy suppresses the death of these neuroblasts. Consequently, attenuation of the Fzy-dependent survival mechanism functions downstream of catastrophic cellular stress and p53 to eliminate neuroblasts by necrosis. Strategies that target the Fzy-dependent survival mechanism might lead to the discovery of new treatments or complement the pre-existing therapies to eliminate apoptosis-resistant cancer stem cells by necrosis.


Assuntos
Encéfalo/patologia , Proteínas Cdc20/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/enzimologia , Células-Tronco Neurais/patologia , Ciclossomo-Complexo Promotor de Anáfase/fisiologia , Animais , Animais Geneticamente Modificados , Encéfalo/enzimologia , Proteínas Cdc20/genética , Proliferação de Células , Sobrevivência Celular/genética , Proteínas de Drosophila/genética , Genes p53/fisiologia , Necrose/genética , Células-Tronco Neurais/enzimologia , Transdução de Sinais/genética , Estresse Fisiológico/genética
4.
Dev Cell ; 18(1): 126-35, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20152183

RESUMO

To ensure normal development and maintenance of homeostasis, the extensive developmental potential of stem cells must be functionally distinguished from the limited developmental potential of transit amplifying cells. Yet the mechanisms that restrict the developmental potential of transit amplifying cells are poorly understood. Here we show that the evolutionarily conserved transcription factor dFezf/Earmuff (Erm) functions cell-autonomously to maintain the restricted developmental potential of the intermediate neural progenitors generated by type II neuroblasts in Drosophila larval brains. Although erm mutant intermediate neural progenitors are correctly specified and show normal apical-basal cortical polarity, they can dedifferentiate back into a neuroblast state, functionally indistinguishable from normal type II neuroblasts. Erm restricts the potential of intermediate neural progenitors by activating Prospero to limit proliferation and by antagonizing Notch signaling to prevent dedifferentiation. We conclude that Erm dependence functionally distinguishes intermediate neural progenitors from neuroblasts in the Drosophila larval brain, balancing neurogenesis with stem cell maintenance.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Sistema Nervoso/embriologia , Neurogênese/fisiologia , Neurônios/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Polaridade Celular/fisiologia , Proliferação de Células , Drosophila/citologia , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Larva/citologia , Larva/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/citologia , Neurônios/citologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Células-Tronco/citologia , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Dedos de Zinco/genética
5.
Tissue Eng Part A ; 14(9): 1549-59, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18687053

RESUMO

Enhancers, or cis-regulatory elements, are the principal determinants of spatiotemporal patterning of gene expression. For reasons of clinical and research utility, it is desirable to build customized enhancers that drive novel gene expression patterns, but currently, we largely rely on "found" genomic elements. Synthetic enhancers, assembled from transcription factor binding sites taken from natural signal-regulated enhancers, generally fail to behave like their wild-type counterparts when placed in transgenic animals, suggesting that important aspects of enhancer function are still unexplored. As a step toward the creation of a truly synthetic regulatory element, we have undertaken an extensive structure-function study of an enhancer of the Drosophila decapentaplegic (dpp) gene that drives expression in the developing visceral mesoderm (VM). Although considerable past efforts have been made to dissect the dppVM enhancer, transgenic experiments presented here indicate that its activity cannot be explained by the known regulators alone. dppVM contains multiple, previously uncharacterized, regulatory sites, some of which exhibit functional redundancy. The results presented here suggest that even the best-studied enhancers must be further dissected before they can be fully understood, and before faithful synthetic elements based on them can be created. Implications for developmental genetics, mathematical modeling, and therapeutic applications are discussed.


Assuntos
Elementos Facilitadores Genéticos/genética , Transcrição Gênica , Animais , Sequência de Bases , Drosophila , Proteínas de Drosophila/genética , Regulação da Expressão Gênica , Genes de Insetos/genética , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA