Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gene ; 621: 5-11, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28412459

RESUMO

Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by reduced expression of the protein frataxin. Frataxin is thought to play a role in iron-sulfur cluster biogenesis and heme synthesis. In this study, we used erythroid progenitor stem cells obtained from FRDA patients and healthy donors to investigate the putative role, if any, of frataxin deficiency in heme synthesis. We used electrochemiluminescence and qRT-PCR for frataxin protein and mRNA quantification. We used atomic absorption spectrophotometry for iron levels and a photometric assay for hemoglobin levels. Protoporphyrin IX and Ferrochelatase were analyzed using auto-fluorescence. An "IronChip" microarray analysis followed by a protein-protein interaction analysis was performed. FRDA patient cells showed no significant changes in iron levels, hemoglobin synthesis, protoporphyrin IX levels, and ferrochelatase activity. Microarray analysis presented 11 genes that were significantly changed in all patients compared to controls. The genes are especially involved in oxidative stress, iron homeostasis and angiogenesis. The mystery about the involvement of frataxin on iron metabolism raises the question why frataxin deficiency in primary FRDA cells did not lead to changes in biochemical parameters of heme synthesis. It seems that alternative pathways can circumvent the impact of frataxin deficiency on heme synthesis. We show for the first time in primary FRDA patient cells that reduced frataxin levels are still sufficient for heme synthesis and possibly other mechanisms can overcome reduced frataxin levels in this process. Our data strongly support the fact that so far no anemia in FRDA patients was reported.


Assuntos
Células Precursoras Eritroides/metabolismo , Eritropoese , Ataxia de Friedreich/metabolismo , Heme/biossíntese , Estudos de Casos e Controles , Células Cultivadas , Células Precursoras Eritroides/citologia , Ferroquelatase/metabolismo , Ataxia de Friedreich/sangue , Hemoglobinas/metabolismo , Humanos , Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Estresse Oxidativo , Protoporfirinas/metabolismo , Frataxina
2.
Biometals ; 28(1): 35-50, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25326244

RESUMO

Intravenous iron preparations, like iron sucrose (IS) and ferric carboxymaltose (FCM) differ in their physicochemical stability. Thus differences in storage and utilization can be expected and were investigated in a non-clinical study in liver parenchyma HepG2-cells and THP-1 macrophages as models for toxicological and pharmacological target cells. HepG2-cells incorporated significant amounts of IS, elevated the labile iron pool (LIP) and ferritin and stimulated iron release. HepG2-cells had lower basal cellular iron and ferritin content than THP-1 macrophages, which showed only marginal accumulation of IS and FCM. However, FCM increased the LIP up to twofold and significantly elevated ferritin within 24 h in HepG2-cells. IS and FCM were non-toxic for HepG2-cells and THP-1 macrophages were more sensitive to FCM compared to IS at all concentrations tested. In a cell-free environment redox-active iron was higher with IS than FCM. Biostability testing via assessment of direct transfer to serum transferrin did not reflect the chemical stability of the complexes (i.e., FCM > IS). Effect of vitamin C on mobilisation to transferrin was an increase with IS and interestingly a decrease with FCM. In conclusion, FCM has low bioavailability for liver parenchyma cells, therefore liver iron deposition is unlikely. Ascorbic acid reduces transferrin-chelatable iron from ferric carboxymaltose, thus effects on hepcidin expression should be investigated in clinical studies.


Assuntos
Compostos Férricos/farmacologia , Ácido Glucárico/farmacologia , Maltose/análogos & derivados , Ácido Ascórbico/metabolismo , Linhagem Celular , Óxido de Ferro Sacarado , Ferritinas/metabolismo , Células Hep G2 , Humanos , Ferro/metabolismo , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Maltose/farmacologia
3.
Pharm Dev Technol ; 20(2): 176-82, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24219061

RESUMO

CONTEXT: Severe iron deficiency requires intravenous iron supplementation to replenish iron stores. Intravenous iron sucrose has been used for decades for the treatment of anemia. New generic iron sucrose products are now marketed for the use in several countries and there is an ongoing discussion about the safety and efficacy of iron sucrose similars. OBJECTIVE: In this study, we compared the iron sucrose originator Venofer® and the generic iron sucrose AZAD (ISA) regarding bioavailability, toxicity and stability in human THP-1 cells and HepG2 cells. METHODS: The bioavailability of Venofer® and ISA was investigated in both cell types by a ferrozin-based assay. The release of incorporated iron was assayed by atomic absorption spectroscopy. Ferritin content was measured by enzyme-linked immunosorbent assay (ELISA). HepG2 cells were used to investigate the intracellular labile iron pool (LIP), which was measured by the fluorescent calcein assay. The amount of redox-active iron within the iron formulations was assayed using fluorescent dichlorofluorescein. RESULTS: We found no significant differences in all parameters between Venofer® and ISA in regard of bioavailability, toxicity and stability in vitro. DISCUSSION: ISA shows identical physico-chemical features and identical bioavailability in vitro. This study is a profound basis for future clinical tests with generic iron sucrose compounds.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Medicamentos Genéricos/administração & dosagem , Medicamentos Genéricos/química , Compostos Férricos/administração & dosagem , Compostos Férricos/química , Sacarose/administração & dosagem , Sacarose/química , Disponibilidade Biológica , Técnicas de Cultura de Células , Relação Dose-Resposta a Droga , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Medicamentos Genéricos/efeitos adversos , Medicamentos Genéricos/metabolismo , Ensaio de Imunoadsorção Enzimática , Compostos Férricos/efeitos adversos , Compostos Férricos/metabolismo , Óxido de Ferro Sacarado , Ferritinas/metabolismo , Ácido Glucárico , Células Hep G2 , Humanos , Injeções Intravenosas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espectrofotometria Atômica , Sacarose/efeitos adversos , Sacarose/metabolismo
4.
Neurol Sci ; 32(2): 327-30, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20506029

RESUMO

Friedreich's ataxia (FRDA) is the most common of the inherited ataxias and is associated with GAA trinucleotide repeat expansions within the first intron of the frataxin (FXN) gene. There are expanded FXN alleles from 66 to 1,700 GAA·TTC repeats in FRDA patients and correlations between number of GAA repeats and frataxin protein levels are assumed. Here, we present for the first time frataxin protein levels as well as analysis of GAA triplet repeats in the FXN gene in a population of 50 healthy Austrian people. Frataxin protein levels were measured in lymphocytes from blood samples by ELISA and GAA repeats were analyzed by capillary electrophoresis. Rather unexpectedly, we found a high variation of frataxin protein levels among the individuals. In addition, there was no correlation between frataxin levels, GAA repeats, age and sex in this group. However, these findings are of great importance for better characterization of the disease.


Assuntos
Proteínas de Ligação ao Ferro/análise , Expansão das Repetições de Trinucleotídeos/genética , Áustria , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Proteínas de Ligação ao Ferro/genética , Linfócitos/metabolismo , Masculino , Reação em Cadeia da Polimerase , Frataxina
5.
Microb Cell Fact ; 9: 87, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21083917

RESUMO

BACKGROUND: Animal-free recombinant proteins provide a safe and effective alternative to tissue or serum-derived products for both therapeutic and biomanufacturing applications. While recombinant insulin and albumin already exist to replace their human counterparts in cell culture media, until recently there has been no equivalent for serum transferrin. RESULTS: The first microbial system for the high-level secretion of a recombinant transferrin (rTf) has been developed from Saccharomyces cerevisiae strains originally engineered for the commercial production of recombinant human albumin (Novozymes' Recombumin® USP-NF) and albumin fusion proteins (Novozymes' albufuse®). A full-length non-N-linked glycosylated rTf was secreted at levels around ten-fold higher than from commonly used laboratory strains. Modification of the yeast 2 µm-based expression vector to allow overexpression of the ER chaperone, protein disulphide isomerase, further increased the secretion of rTf approximately twelve-fold in high cell density fermentation. The rTf produced was functionally equivalent to plasma-derived transferrin. CONCLUSIONS: A Saccharomyces cerevisiae expression system has enabled the cGMP manufacture of an animal-free rTf for industrial cell culture application without the risk of prion and viral contamination, and provides a high-quality platform for the development of transferrin-based therapeutics.


Assuntos
Saccharomyces cerevisiae/metabolismo , Transferrina/biossíntese , Contagem de Células , Fermentação , Glicosilação , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Transferrina/química , Transferrina/genética
6.
Arzneimittelforschung ; 60(7): 459-65, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20712137

RESUMO

Concerns exist that administration of intravenous (i.v.) iron preparations is associated with oxidative stress. Therefore iron sucrose (CAS 8047-67-4), ferric gluconate (CAS 34098-81-1) and iron dextran (CAS 9004-66-4) were assessed for redox-active iron by a dichlorofluorescein assay and for intracellular reactive oxygen species (ROS) generation and cytotoxicity in HepG2 cells. Examining each i.v. iron preparation at its maximum concentration achieved following clinically frequently used doses in a 70 kg individual in in vitro experiments, redox-active iron was highest with ferric gluconate, followed by iron dextran and iron sucrose. Interestingly, when the i.v. iron preparations were diluted in human serum instead of buffer, redox-active iron was highest with iron dextran, followed by iron sucrose, and practically disappeared with ferric gluconate. ROS production in HepG2 cells was increased by all i.v. iron preparations. However, in the neutral red cytotoxicity assay all i.v. iron preparations were non-toxic. In conclusion, ferric gluconate showed the highest increase in intracellular ROS-production in HepG2 cells and the highest amount of redox-active iron in buffer in the in vitro assays. In contrast to the other i.v. iron preparations, redox-active iron from ferric gluconate was rendered completely redox-inactive by serum, indicating that redox-active iron in the various preparations has different chemical properties.


Assuntos
Dextranos/farmacologia , Compostos Férricos/farmacologia , Ferro/sangue , Sobrevivência Celular/efeitos dos fármacos , Óxido de Ferro Sacarado , Sequestradores de Radicais Livres/farmacologia , Ácido Glucárico , Células Hep G2/efeitos dos fármacos , Células Hep G2/fisiologia , Humanos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
7.
Eur J Clin Invest ; 40(6): 561-5, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20456483

RESUMO

BACKGROUND: Friedreich's ataxia (FRDA) is a neurodegenerative disorder caused by decreased expression of the mitochondrial protein frataxin. Recently we showed in a clinical pilot study in Friedreich's ataxia patients that recombinant human erythropoietin (rhuEPO) significantly increases frataxin-expression. In this in vitro study, we investigated the role of the erythropoietin receptor (EPO-R) in the frataxin increasing effect of rhuEPO and if nonerythropoietic carbamylated erythropoietin (CEPO), which cannot bind to the classical EPO-R increases frataxin expression. MATERIALS AND METHODS: In our experiments human erythroleukaemic K562 cells (+ EPO-R), human monocytic leukemia THP-1 cells (- EPO-R) and isolated primary lymphocytes from healthy control and FRDA patients were incubated with different concentrations of rhuEPO or CEPO. Frataxin-expression was detected by an electrochemical luminescence immunoassay (based on the principle of an ELISA). RESULTS: We show that rhuEPO increases frataxin-expression in K562 cells (expressing EPO-R) as well as in THP-1 cells (without EPO-R expression). These results were confirmed by the finding that CEPO, which cannot bind to the classical EPO-R increased frataxin expression in the same concentration range as rhuEPO. In addition, we show that both EPO derivatives significantly increase frataxin-expression in vitro in control and Friedreich's ataxia patients primary lymphocytes. CONCLUSION: Our results provide a scientific basis for further studies examining the effectiveness of nonerythropoietic derivatives of erythropoietin for the treatment of Friedreich's ataxia patients.


Assuntos
Eritropoetina/farmacologia , Ataxia de Friedreich/tratamento farmacológico , Proteínas de Ligação ao Ferro/análise , Proteínas Recombinantes/farmacologia , Linhagem Celular , Células Cultivadas , Ensaio de Imunoadsorção Enzimática/métodos , Eritropoetina/análogos & derivados , Humanos , Células K562/efeitos dos fármacos , Células K562/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Frataxina
8.
Free Radic Res ; 44(7): 783-91, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20380593

RESUMO

HIF-1alpha represents the oxygen-regulated sub-unit of the transcription factor HIF-1, which regulates the transcription of numerous genes involved in cellular response to hypoxia and oxidative stress. It is shown here that nitric oxide (NO) induces HIF-1alpha stabilization in human endothelial cells from umbilical cords (HUVECs) under normoxic conditions. HIF-1alpha protein was increased approximately 36-fold after incubation with 500 microM DETA-NO, which releases a steady state NO concentration of roughly one thousandth of the initial concentration of the donor. Loading of the cells with vitamin C counteracted NO-induced HIF-1alpha accumulation. Based on the observations that oxidative and nitrosative stress can influence the activity of the proteasomal system, which is responsible for the non-lysosomal degradation of proteins, among them HIF-1alpha, it was investigated whether NO-induced stabilization of HIF-1alpha might be due to reduced 20S proteasomal activity. This hypothesis could not be proved, because NO concentrations to inhibit 20S proteasomal activity were about one order of magnitude higher than that to inhibit HIF-1alpha degradation.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Células Endoteliais/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Óxido Nítrico/fisiologia , Hipóxia Celular , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Ácido Desidroascórbico/metabolismo , Células Endoteliais/metabolismo , Humanos , Recém-Nascido , Óxido Nítrico/antagonistas & inibidores , Estresse Oxidativo , Oxigênio/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Triazenos/farmacologia , Veias Umbilicais
9.
Anal Chim Acta ; 659(1-2): 129-32, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20103114

RESUMO

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease affecting 1 in 50,000 people and is caused by a GAA-trinucleotide expansion in the frataxin gene located on chromosome locus 9q13 which results in a markedly reduced expression of frataxin, a small mitochondrial protein. The exact function of frataxin is still unknown and currently there is no approved treatment available. In the near future there will be a high demand for measuring frataxin protein levels due to the development of therapeutic strategies for FRDA based on manipulating frataxin expression levels in vivo. In this paper we describe the development of an electrochemiluminescence assay (ECLIA) to measure frataxin protein levels in a 96-well plate format. The ECLIA for frataxin is able to measure human and mouse samples and is highly quantitative, accurate and reproducible, with low intra- and inter-assay error throughout a wide working range. The assay has an excellent precision and provides a new tool for the set up of high-throughput screening for basic research and for clinical studies with FRDA patients.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Proteínas de Ligação ao Ferro/análise , Medições Luminescentes/métodos , Animais , Linhagem Celular Tumoral , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/metabolismo , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Células K562 , Camundongos , Frataxina
10.
Mov Disord ; 23(13): 1940-4, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18759345

RESUMO

In a "proof-of-concept" study, we demonstrated that recombinant human erythropoietin (rhuEPO) increases frataxin levels in Friedreich's ataxia (FRDA) patients. We now report a 6-month open-label clinical pilot study of safety and efficacy of rhuEPO treatment in FRDA. Eight adult FRDA patients received 2.000 IU rhuEPO thrice a week subcutaneously. Clinical outcome measures included Ataxia Rating Scales. Frataxin levels and indicators for oxidative stress were assessed. Hematological parameters were monitored biweekly. Scores in Ataxia Rating Scales such as FARS (P = 0.0063) and SARA (P = 0.0045) improved significantly. Frataxin levels increased (P = 0.017) while indicators of oxidative stress such as urine 8-OHdG (P = 0.012) and peroxide levels decreased (P = 0.028). Increases in hematocrit requiring phlebotomies occurred in 4 of 8 patients. In this explorative open-label clinical pilot study, we found an evidence for clinical improvement together with a persistent increase of frataxin levels and a reduction of oxidative stress parameters in patients with FRDA receiving chronic treatment with rhuEPO. Safety monitoring with regular blood cell counts and parameters of iron metabolism is a potential limitation of this approach.


Assuntos
Eritropoetina/uso terapêutico , Ataxia de Friedreich/tratamento farmacológico , Ataxia de Friedreich/fisiopatologia , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Seguimentos , Ataxia de Friedreich/urina , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Proteínas Recombinantes , Índice de Gravidade de Doença , Resultado do Tratamento , Frataxina
11.
Ann Neurol ; 62(5): 521-4, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17702040

RESUMO

To determine the role of recombinant human erythropoietin as a possible treatment option in Friedreich's ataxia, we performed an open-label clinical pilot study. Primary outcome measure was the change of frataxin levels at week 8 versus baseline. Twelve Friedreich's ataxia patients received 5,000 units recombinant human erythropoietin three times weekly subcutaneously. Frataxin levels were measured in isolated lymphocytes by enzyme-linked immunosorbent assay. In addition, urinary 8-hydroxydeoxyguanosine and serum peroxides, were measured. Treatment with recombinant human erythropoietin showed a persistent and significant increase in frataxin levels after 8 weeks (p < 0.01). All patients showed a reduction of oxidative stress markers.


Assuntos
Eritropoetina/uso terapêutico , Ataxia de Friedreich/tratamento farmacológico , Adolescente , Adulto , Feminino , Ataxia de Friedreich/sangue , Humanos , Proteínas de Ligação ao Ferro/sangue , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Proteínas Recombinantes , Frataxina
12.
Nephrol Dial Transplant ; 22(10): 2824-30, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17556418

RESUMO

BACKGROUND: Intravenous iron (IVI) therapy is required in patients with end-stage renal disease (ESRD) under chronic haemodialysis (HD). In this in vitro study we investigated the availability and stability of iron hydroxyethyl starch (iron-Hes) compounds in THP-1 cells (macrophage phenotype) and liver cells (HepG2 cells) and compared it with the well-known iron dextran. METHODS: The uptake and release of these iron formulations by THP-1 cells (macrophage phenotype) and HepG2 cells were investigated with atomic absorption spectrometry (AAS). Ferritin was measured by ELISA. HepG2 cells were used to investigate effects of IVI on the intracellular labile iron pool (LIP), which was measured by using the fluorescent calcein assay. The amount of redox-active iron within the iron formulations was assayed using dichlorofluorescein as fluorescent probe. RESULTS: All iron preparations were taken up, stored in ferritin and released again by macrophages and HepG2-cells. This study shows that the availability and stability of iron-HES formulations in vitro are comparable with the well-known iron dextran compounds. CONCLUSIONS: Our results indicate that these new iron formulations have a good stability and availability in vitro and are comparable with the well-known iron dextran complexes.


Assuntos
Dextranos/metabolismo , Derivados de Hidroxietil Amido/farmacologia , Ferro/química , Ferro/farmacologia , Fígado/metabolismo , Macrófagos/metabolismo , Linhagem Celular , Quelantes/farmacologia , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Ferritinas/química , Ferritinas/metabolismo , Humanos , Técnicas In Vitro , Ferro/sangue , Fígado/citologia , Macrófagos/citologia , Oxirredução , Fatores de Tempo
13.
Biochimie ; 88(6): 575-81, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16644088

RESUMO

The close interrelationship of oxidative stress and iron is evident by the influence of intracellular reactive oxygen species on iron metabolism. Oxygen radicals can lead to release of iron from iron-sulfur proteins and ferritin, and can damage iron-containing enzymes such as mitochondrial aconitase. Treatment of HepG2 human hepatoma cells with antimycin A has two effects relating to iron depending on the concentrations of antimycin A: increase of the labile iron pool and stimulation of non-transferrin-bound iron uptake. Whereas the first could also be generated with nitrofurantoin, the stimulation of non-transferrin-bound iron uptake was only seen with antimycin A and needed considerably higher concentrations. Pretreatment of the cells with ebselen, which scavenges peroxides, reverted only the effect of nitrofurantoin on the labile iron pool. Depletion with iron chelators before or after treatment with antimycin A diminished the stimulation of non-transferrin-bound iron uptake. We conclude that the generation of oxygen radicals in the mitochondria leads to the liberation of iron from mitochondrial enzymes, which enters the labile iron pool. But high concentrations of antimycin A leading to the stimulation of non-transferrin-bound iron uptake is possibly not related to the inhibition of the respiratory chain.


Assuntos
Antimicina A/farmacologia , Ferro/metabolismo , Nitrofurantoína/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Quelantes de Ferro/farmacologia
14.
Free Radic Biol Med ; 40(3): 436-43, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16443158

RESUMO

Zinc is an essential trace element for the immune system. It is known to be essential for highly proliferating cells, especially for cells of the immune system. However, zinc and other divalent cations are known to inhibit the human neutrophilic NADPH oxidase. Differentiated HL-60 cells were found to accumulate large quantities of vitamin C (ascorbate) after activation of the NADPH oxidase by phorbol esters (PMA). This increase in vitamin C transport is due to the generation of superoxide and subsequent oxidation of ascorbate to dehydroascorbate (DHA) which is preferentially taken up by the cells. We found that zinc reversibly inhibits both PMA-stimulated ascorbate uptake and superoxide generation with a half-maximal effect at 20 microM of free zinc ions. Higher residual extracellular ascorbate concentrations were measured with increasing zinc concentrations, indicating that less ascorbate was oxidized and taken up by the cells. When the fluorescent dye diSC3(5) was used to monitor shifts in membrane potential, we found that depolarization with PMA was prolonged after preincubation of the cells with zinc. Suppression of the respiratory burst as well as inhibition of the uptake of the antioxidant vitamin C may disturb the balance between oxidative damage of invading particles and antioxidant protection in activated neutrophils.


Assuntos
Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Transporte Biológico/efeitos dos fármacos , Diferenciação Celular , Explosão Respiratória , Zinco/farmacologia , Antioxidantes/química , Ácido Ascórbico/química , Sobrevivência Celular/efeitos dos fármacos , Ácido Desidroascórbico/química , Células HL-60 , Humanos , Potenciais da Membrana/efeitos dos fármacos , NADPH Oxidases/metabolismo , Neutrófilos/enzimologia , Oxirredução , Superóxidos/metabolismo
15.
Free Radic Res ; 39(11): 1225-31, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16298749

RESUMO

OBJECTIVE: Al(3+) stimulates Fe(2+) induced lipid oxidation in liposomal and cellular systems. Low-density lipoprotein (LDL) oxidation may render the particle atherogenic. As elevated levels of Al(3+) and increased lipid oxidation of LDL are found in sera of hemodialysis patients, we investigated the influence of Al(3+) on LDL oxidation. MATERIALS AND METHODS: Using different LDL modifying systems (Fe(2+), Cu(2+), free radical generating compounds, human endothelial cells, hemin/H(2)O(2) and HOCl), the influence of Al(3+) on LDL lipid and apoprotein alteration was investigated by altered electrophoretic mobility, lipid hydroperoxide-, conjugated diene- and TBARS formation. RESULTS: Al(3+) could stimulate the oxidizability of LDL by Fe(2+), but not in the other systems tested. Al(3+) and Fe(2+) were found to bind to LDL and Al(3+)could compete with Fe(2+) binding to the lipoprotein. Fluorescence polarization data indicated that Al(3+) does not affect the phospholipid compartment of LDL. CONCLUSIONS: The results indicate that increased LDL oxidation by Fe(2+) in presence of Al(3+) might be due to blockage of Fe(2+) binding sites on LDL making more free Fe(2+) available for lipid oxidation.


Assuntos
Alumínio/química , Íons , Ferro/química , Lipoproteínas LDL/química , Oxigênio/química , Diálise Renal , Aterosclerose , Células Cultivadas , Cobre/química , Eletroforese , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Radicais Livres , Hemina/química , Humanos , Peróxido de Hidrogênio/química , Íons/química , Metabolismo dos Lipídeos , Peroxidação de Lipídeos , Lipídeos/química , Lipoproteínas/química , Oxirredução , Espectrometria de Fluorescência , Substâncias Reativas com Ácido Tiobarbitúrico , Fatores de Tempo
16.
Kidney Int ; 67(3): 1161-70, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15698458

RESUMO

BACKGROUND: There is growing interest to use ascorbic acid as adjuvant therapy for patients with recombinant human erythropoietin-hyporesponsiveness (rHuEpo). Several clinical studies showed the beneficial effect of ascorbic acid treatment on hematologic parameters in rHuEpo-treated hemodialysis patients with elevated or even normal iron stores. However, whether ascorbic acid directly affects stability and cellular metabolism of intravenous iron preparations (IVI) is not well understood. METHODS: The preparations for testing were iron sucrose (Venofer), ferric gluconate (Ferrlecit), and iron dextran (INFeD). HepG2-cells were used to investigate effects of ascorbic acid on iron bioavailability for the intracellular labile iron pool (LIP) from IVI by using the fluorescent calcein-assay, and cellular ferritin content was measured by enzyme-linked immunosorbent assay (ELISA). Transferrin-chelatable iron was assessed by fluorescent-apotransferrin, and cell toxicity was assayed by neutral red cytotoxicity test. RESULTS: The effects of vitamin C on different preparations do not reflect their known chemical stability (i.e., iron dextran >iron sucrose >ferric gluconate). Effects of ascorbic acid on the increase of the intracellular LIP, as well as on increasing mobilization to transferrin in serum, were limited to iron sucrose. Ascorbic acid did not increase cell toxicity and the amount of low molecular weight iron in serum. CONCLUSION: We conclude that corrected ascorbic acid levels in hemodialysis (HD) patients could increase the amount of bioavailable iron from iron sucrose, but not from other classes of IVI. Vitamin C administration could therefore result in a lower need of iron sucrose to correct anemia.


Assuntos
Ácido Ascórbico/farmacologia , Ferro/metabolismo , Disponibilidade Biológica , Linhagem Celular Tumoral , Eritropoetina/uso terapêutico , Ferritinas/biossíntese , Humanos , Ferro/administração & dosagem , Proteínas Recombinantes , Diálise Renal , Transferrina/metabolismo
17.
Free Radic Res ; 38(10): 1073-81, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15512795

RESUMO

Hypericin is a photosensitizing pigment found in St. John's wort (Hypericum perforatum) displaying a high toxicity towards certain tumors. The fact that some non-tumor cells, especially monocytes and granulocytes, are resistant to its photocytotoxic effects, posed the question whether this insensitivity is due to their ability to accumulate vitamin C, an antioxidant which alleviates the deleterious work of free radicals. HL-60 promyelocytic tumor cells can be differentiated to neutrophilic granulocytes by treatment with dimethylsulfoxide and were used as cell model. In the differentiated cells, treatment with phorbol esters (PMA) stimulates vitamin C (ascorbate) transport. The uptake rates were unaltered by hypericin at concentrations below 1 microM and irradiation with visible light at a light dose of 6 J/cm2. Inhibition by higher concentrations of hypericin was most probably due to a combination of photocytotoxic properties of the dye and oxygen radicals generated during respiratory burst. Superoxide production by NADPH oxidase followed by reduction of ferricytochrome c was inhibited by hypericin. The degree of inhibition was dependent on the concentration of hypericin and light intensity: IC50-values were 1.7 and 0.7 microM under light doses of 3.6 and 10.8 J/cm2, respectively. Oxidative stress, monitored with 2',7'-dichlorofluorescein (DCF) was only slightly decreased by ascorbate even at higher concentrations of hypericin. In contrast to its effect on the ferricytochrome c-reduction, irradiation had no significant influence on DCF-fluorescence. However, the viability of the cells was strongly decreased after photosensitization and no significant improvement was obtained by ascorbate. Results from this work indicate that ascorbate transport per se is not altered during photodynamic therapy and vitamin C does not interfere with hypericin-induced photodamage of cellular targets.


Assuntos
Antineoplásicos/efeitos adversos , Ácido Ascórbico/metabolismo , Transporte Biológico , Luz/efeitos adversos , Perileno/análogos & derivados , Perileno/efeitos adversos , Fotoquimioterapia , Explosão Respiratória/fisiologia , Antracenos , Antioxidantes/metabolismo , Diferenciação Celular , Citocromos c/química , Citocromos c/metabolismo , Fluoresceínas , Células HL-60 , Humanos , NADPH Oxidases/metabolismo , Oxirredução , Estresse Oxidativo , Ésteres de Forbol/farmacologia , Proteína Quinase C/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
18.
J Am Soc Nephrol ; 15(6): 1648-55, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15153577

RESUMO

Intravenous iron (iv.Fe) is used to optimize response to recombinant human erythropoietin (r-HuEPO) in ESRD, but no consensus exists with respect to the best regimen to avoid transferrin "oversaturation," oxidative stress, and the occurrence of non-transferrin-bound iron (NTBI). Iv.Fe was stopped for 1 wk in 35 hemodialysis (HD) patients who were routinely receiving iv.Fe and r-HuEPO. The iv.Fe group received 100 mg of ferric saccharate (Venofer) at the end of the first HD session, whereas the time-control group was treated under the same conditions but received no iv.Fe. Serum samples were taken before the first HD session, immediately and 60 min after iv.Fe administration, and before the next HD session. Sera were analyzed for NTBI and peroxides; transferrin saturation was analyzed by urea-PAGE and Western blot. In an in vitro model system with HepG2 cells, the effects of ESRD serum on the labile iron pool (LIP) were assayed using the fluorescence calcein assay. NTBI significantly increased after iv.Fe-administration and returned to baseline values before the next HD-session. There was a shift from apo- to monoferric transferrin, but no "oversaturation" of transferrin after iv.Fe-treatment. Peroxides increased in both groups after HD. Hemodialysis decreased bioavailable iron for the LIP in HepG2-cells, whereas serum of iv.Fe-treated HD patients highly increased the LIP in these cells. A total of 100 mg of iv.Fe led to NTBI generation but not to an oversaturation of transferrin. Peroxide concentrations significantly increased during HD but were not correlated to iv.Fe administration and seemed to result from other sources of oxidative stress related to HD. NTBI can enter liver cells and increase the potentially harmful LIP.


Assuntos
Compostos Férricos/farmacologia , Ferro/sangue , Ferro/metabolismo , Peróxidos/metabolismo , Diálise Renal , Transferrina/química , Western Blotting , Linhagem Celular , Ácido Cítrico/metabolismo , Eletroforese em Gel de Poliacrilamida , Eritropoetina/metabolismo , Óxido de Ferro Sacarado , Fluoresceínas/metabolismo , Ácido Glucárico , Humanos , Estresse Oxidativo , Compostos de Amônio Quaternário/metabolismo , Fatores de Tempo , Transferrina/metabolismo , Ureia/metabolismo
19.
Cell Physiol Biochem ; 14(1-2): 41-6, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14976405

RESUMO

Heat shock protein 90 (Hsp90) is a molecular chaperone abundant in eukaryotic cells. However, its exact role is not completely understood yet. Employing an iron-binding assay and mass spectrometric analysis, we have identified human Hsp90 as an iron-binding protein in membrane protein preparations of human HeLa cells. Western blot analysis and confocal microscopy confirmed that a portion of cellular Hsp90 is associated with the plasma membrane, but it does not seem to be expressed on the cell surface. The iron-binding assay with purified human Hsp90 confirmed iron binding by Hsp90. Thus we suggest that Hsp90 is an iron-binding protein associated with the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Ferro/metabolismo , Proteínas de Choque Térmico HSP90/química , Células HeLa , Humanos , Ferro/química , Ligação Proteica
20.
Eur J Biochem ; 270(18): 3731-8, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12950256

RESUMO

Intravenous iron, used for the treatment of anemia in chronic renal failure and other diseases, represents a possible source of free iron in tissue cells, particularly in the liver. In this study we examined the effect of different sources of intravenous iron (IVI) on the labile iron pool (LIP) which represents the nonferritin-bound, redox-active iron that is implicated in oxidative stress and cell injury. Furthermore, we examined the role of the LIP for the synthesis of ferritin. We used HepG2 cells as a well known model for hepatoma cells and monitored the LIP with the metal-sensitive fluorescent probe, calcein-AM, the fluorescence of which is quenched on binding to iron. We showed that steady state LIP levels in HepG2 cells were increased transiently, up to three-fold compared to control cells, as an adaptive response to long-term IVI exposure. In relation to the amount of iron in the LIP, the ferritin levels increased and the iron content of ferritin decreased. As any fluctuation in the LIP, even when it is only transient (e.g. after exposure to intravenous iron in this study), may result either in impairment of synthesis of iron containing proteins or in cell injury by pro-oxidants. Such findings in nonreticuloendothelial cells may have important implications in the generation of the adverse effects of chronic iron exposure reported in dialysis patients.


Assuntos
Carcinoma Hepatocelular/metabolismo , Compostos Férricos/administração & dosagem , Ferro/metabolismo , Ferro/farmacologia , Neoplasias Hepáticas/metabolismo , Ferritinas/análise , Ferritinas/biossíntese , Fluoresceínas/química , Fluoresceínas/metabolismo , Fluorescência , Humanos , Hidrazonas/farmacologia , Injeções Intravenosas , Quelantes de Ferro/farmacologia , Estresse Oxidativo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA