Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Med Insights Case Rep ; 14: 1179547621999409, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746520

RESUMO

Mucopolysaccharidosis IVA (MPS IVA) is a rare autosomal recessive lysosomal storage disorder resulting from N-acetylgalactosamine-6-sulfatase (GALNS) deficiency that occurs in approximately 1 in 76 000 to 1 in 640 000 live births. Given that the diagnosis of MPS IVA relies heavily on the results of initial urine glycosaminoglycan (GAG) screening, cases that present with falsely normal urine GAG concentrations can delay the diagnosis and follow-up care for patients. This case study follows a patient diagnosed with MPS IVA at 9 months of age based on relation to a consanguineous 3-year-old sibling with MPS IVA and the use of direct enzyme activity analysis. Details regarding skeletal presentation and identification of genetic variants are presented along with data on follow-up urinary GAG monitoring during treatment with enzyme replacement therapy and treatment for a growth hormone disorder.

3.
Clin Orthod Res ; 3(2): 55-66, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-11168286

RESUMO

A better understanding of cellular and molecular mechanisms involved in response to mechanical stress is a prerequisite for future improvements in orthodontic treatment. To expand the application of molecular biology techniques in this area of research, we developed and characterized a mouse tooth movement model. The aim of this study was to biomechanically characterize this model and to evaluate the effect of orthodontic stress on the proliferation of periodontal osteoblasts. We used an orthodontic coil spring appliance with a low force/deflection rate, which produced an average force of 10-12 g. This design provided a predictable tipping movement of the molar with the center of rotation at the level of root apices. Histological observations of paradental tissues revealed a response favoring a fast onset of tooth movement and deposition of new osteoid starting after 3 days of treatment. The effect of treatment on the histomorpometric parameter of the number of osteoclasts per unit bone perimeter was determined after 1, 2, 3, 4, 6, and 12 days of treatment. Starting with day 2, the osteoblast number showed a modest but consistent increase in treated periodontal sites at all time-points, ranging from 14 to 39% and becoming significant only at day 6. Only a moderate increase in the number of osteoblasts in the areas of otherwise intense bone matrix synthesis suggests that, during bone formation, proliferation of cells has a smaller role compared to a marked increase in differentiation of individual cells. The mouse model, which allows for a controlled, reproducible, orthodontic mechanical loading, can be applied to both wild-type and transgenic animals and should enhance the research of the transduction of mechanical orthodontic signal into a biological response.

4.
Clin Orthod Res ; 3(3): 55-66, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-11553067

RESUMO

A better understanding of cellular and molecular mechanisms involved in response to mechanical stress is a prerequisite for future improvements in orthodontic treatment. To expand the application of molecular biology techniques in this area of research, we developed and characterized a mouse tooth movement model. The aim of this study was to biomechanically characterize this model and to evaluate the effect of orthodontic stress on the proliferation of periodontal osteoblasts. We used an orthodontic coil spring appliance with a low force/deflection rate, which produced an average force of 10-12 g. This design provided a predictable tipping movement of the molar with the center of rotation at the level of root apices. Histological observations of paradental tissues revealed a response favoring a fast onset of tooth movement and deposition of new osteoid starting after 3 days of treatment. The effect of treatment on the histomorpometric parameter of the number of osteoclasts per unit bone perimeter was determined after 1, 2, 3, 4, 6, and 12 days of treatment. Starting with day 2, the osteoblast number showed a modest but consistent increase in treated periodontal sites at all time-points, ranging from 14 to 39% and becoming significant only at day 6. Only a moderate increase in the number of osteoblasts in the areas of otherwise intense bone matrix synthesis suggests that, during bone formation, proliferation of cells has a smaller role compared to a marked increase in differentiation of individual cells. The mouse model, which allows for a controlled, reproducible, orthodontic mechanical loading, can be applied to both wild-type and transgenic animals and should enhance the research of the transduction of mechanical orthodontic signal into a biological response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA