Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Bioorg Med Chem ; 78: 117130, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36542958

RESUMO

PPAR gamma (PPARG) is a ligand activated transcription factor that regulates genes involved in inflammation, bone biology, lipid homeostasis, as well as a master regulator of adipogenesis and a potential lineage driver of luminal bladder cancer. While PPARG agonists lead to transcriptional activation of canonical target genes, inverse agonists have the opposite effect through inducing a transcriptionally repressive complex leading to repression of canonical target gene expression. While many agonists have been described and tested clinically, inverse agonists offer an underexplored avenue to modulate PPARG biology in vivo. Current inverse agonists lack favorable in vivo properties; herein we describe the discovery and characterization of a series of orally bioavailable 4-chloro-6-fluoroisophthalamides as covalent PPARG inverse-agonists, BAY-5516, BAY-5094, and BAY-9683. Structural studies of this series revealed distinct pre- and post-covalent binding positions, which led to the hypothesis that interactions in the pre-covalent conformation are primarily responsible for driving affinity, while interactions in the post-covalent conformation are more responsible for cellular functional effects by enhancing PPARG interactions with its corepressors. The need to simultaneously optimize for two distinct states may partially explain the steep SAR observed. Exquisite selectivity was achieved over related nuclear receptors in the subfamily due in part to a covalent warhead with low reactivity through an SNAr mechanism in addition to the specificity gained through covalent binding to a reactive cysteine uniquely positioned within the PPARG LBD. BAY-5516, BAY-5094, and BAY-9683 lead to pharmacodynamic regulation of PPARG target gene expression in vivo comparable to known inverse agonist SR10221 and represent new tools for future in vivo studies to explore their potential utility for treatment of disorders of hyperactivated PPARG including luminal bladder cancer and other disorders.


Assuntos
PPAR gama , Neoplasias da Bexiga Urinária , Humanos , PPAR gama/agonistas , Agonismo Inverso de Drogas , Agonistas PPAR-gama , Regulação da Expressão Gênica
3.
J Med Chem ; 65(21): 14843-14863, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36270630

RESUMO

The ligand-activated nuclear receptor peroxisome-proliferator-activated receptor-γ (PPARG or PPARγ) represents a potential target for a new generation of cancer therapeutics, especially in muscle-invasive luminal bladder cancer where PPARγ is a critical lineage driver. Here we disclose the discovery of a series of chloro-nitro-arene covalent inverse-agonists of PPARγ that exploit a benzoxazole core to improve interactions with corepressors NCOR1 and NCOR2. In vitro treatment of sensitive cell lines with these compounds results in the robust regulation of PPARγ target genes and antiproliferative effects. Despite their imperfect physicochemical properties, the compounds showed modest pharmacodynamic target regulation in vivo. Improvements to the in vitro potency and efficacy of BAY-4931 and BAY-0069 compared to those of previously described PPARγ inverse-agonists show that these compounds are novel tools for probing the in vitro biology of PPARγ inverse-agonism.


Assuntos
PPAR gama , PPAR gama/metabolismo , Ligantes
4.
Cell Syst ; 13(9): 724-736.e9, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36057257

RESUMO

Identifying the chemical regulators of biological pathways is a time-consuming bottleneck in developing therapeutics and research compounds. Typically, thousands to millions of candidate small molecules are tested in target-based biochemical screens or phenotypic cell-based screens, both expensive experiments customized to each disease. Here, our uncustomized, virtual, profile-based screening approach instead identifies compounds that match to pathways based on the phenotypic information in public cell image data, created using the Cell Painting assay. Our straightforward correlation-based computational strategy retrospectively uncovered the expected, known small-molecule regulators for 32% of positive-control gene queries. In prospective, discovery mode, we efficiently identified new compounds related to three query genes and validated them in subsequent gene-relevant assays, including compounds that phenocopy or pheno-oppose YAP1 overexpression and kill a Yap1-dependent sarcoma cell line. This image-profile-based approach could replace many customized labor- and resource-intensive screens and accelerate the discovery of biologically and therapeutically useful compounds.


Assuntos
Estudos Prospectivos , Linhagem Celular , Estudos Retrospectivos
6.
Nat Commun ; 9(1): 5450, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575730

RESUMO

Systematic exploration of cancer cell vulnerabilities can inform the development of novel cancer therapeutics. Here, through analysis of genome-scale loss-of-function datasets, we identify adenosine deaminase acting on RNA (ADAR or ADAR1) as an essential gene for the survival of a subset of cancer cell lines. ADAR1-dependent cell lines display increased expression of interferon-stimulated genes. Activation of type I interferon signaling in the context of ADAR1 deficiency can induce cell lethality in non-ADAR1-dependent cell lines. ADAR deletion causes activation of the double-stranded RNA sensor, protein kinase R (PKR). Disruption of PKR signaling, through inactivation of PKR or overexpression of either a wildtype or catalytically inactive mutant version of the p150 isoform of ADAR1, partially rescues cell lethality after ADAR1 loss, suggesting that both catalytic and non-enzymatic functions of ADAR1 may contribute to preventing PKR-mediated cell lethality. Together, these data nominate ADAR1 as a potential therapeutic target in a subset of cancers.


Assuntos
Adenosina Desaminase/genética , Neoplasias Pulmonares/genética , Proteínas de Ligação a RNA/genética , eIF-2 Quinase/metabolismo , Células A549 , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferons/metabolismo , Fosforilação
7.
Cancer Res ; 77(24): 6987-6998, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28923856

RESUMO

The PPARG gene encoding the nuclear receptor PPARγ is activated in bladder cancer, either directly by gene amplification or mutation, or indirectly by mutation of the RXRA gene, which encodes the heterodimeric partner of PPARγ. Here, we show that activating alterations of PPARG or RXRA lead to a specific gene expression signature in bladder cancers. Reducing PPARG activity, whether by pharmacologic inhibition or genetic ablation, inhibited proliferation of PPARG-activated bladder cancer cells. Our results offer a preclinical proof of concept for PPARG as a candidate therapeutic target in bladder cancer. Cancer Res; 77(24); 6987-98. ©2017 AACR.


Assuntos
Terapia de Alvo Molecular , PPAR gama/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Amplificação de Genes/fisiologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Análise em Microsséries , Mutação/fisiologia , Transcriptoma/fisiologia
8.
J Chem Phys ; 140(14): 144506, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24735304

RESUMO

We examine variations in the glass transition temperature (T(g)(x)), molar volume (V(m)(x)), and Raman scattering of titled glasses as a function of modifier (BaO) content in the 25% < x < 48% range. Three distinct regimes of behavior are observed; at low x, 24% < x < 29% range, the modifier largely polymerizes the backbone, T(g)(x) increase, features that we identify with the stressed-rigid elastic phase. At high x, 32% < x < 48% range, the modifier depolymerizes the network by creating non-bridging oxygen (NBO) atoms; in this regime T(g)(x) decreases, and networks are viewed to be in the flexible elastic phase. In the narrow intermediate x regime, 29% < x < 32% range, T(g)(x) shows a broad global maximum almost independent of x, and Raman mode scattering strengths and mode frequencies become relatively x-independent, V(m)(x) show a global minimum, features that we associate with the isostatically rigid elastic phase, also called the intermediate phase. In this phase, medium range structures adapt as revealed by the count of Lagrangian bonding constraints and Raman mode scattering strengths.

9.
Arch Biochem Biophys ; 420(1): 185-93, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14622989

RESUMO

The retinoid-X receptor (RXR) is a ligand activated nuclear receptor that is the heterodimer partner for many class II nuclear receptors. Previously identified natural ligands for this receptor include 9-cis retinoic acid (9cRA), docosahexaenoic acid, and phytanic acid. Our studies were performed to determine if there are any unidentified, physiologically important RXR ligands. Agonists for RXR were purified from rat heart and testes lipid extracts with the use of a cell-based reporter assay to monitor RXR activation. Purified active fractions contained a variety of unsaturated fatty acids and components were quantified by gas-liquid chromatography of derivatized samples. The corresponding fatty acid standards elicited a similar response in the reporter cell assay. Competition binding analysis revealed that the active fatty acids compete with [3H]9cRA for binding to RXR. Non-esterified fatty acids were analyzed from lipid extracts of isolated heart and testes nuclei and endogenous concentrations were found to be within the range of their determined binding affinities. Our studies reveal tissue dependent profiles of RXR agonists and support the idea of unsaturated fatty acids as physiological ligands of RXR.


Assuntos
Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Miocárdio/química , Miocárdio/metabolismo , Receptores do Ácido Retinoico/química , Receptores do Ácido Retinoico/metabolismo , Testículo/química , Testículo/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Animais , Células COS , Chlorocebus aethiops , Ácidos Graxos Insaturados/isolamento & purificação , Ligantes , Masculino , Especificidade de Órgãos , Ratos , Ratos Sprague-Dawley , Receptores do Ácido Retinoico/agonistas , Receptores X de Retinoides , Fatores de Transcrição/agonistas , Ativação Transcricional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA