Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Virology ; 595: 110096, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710129

RESUMO

Herpes stromal keratitis is the leading cause of infectious blindness in the western world. Infection by HSV1 is most common, but VZV and hCMV also infect the cornea. Multiple models of HSV1 corneal infection exist, but none for VZV and hCMV because of their host specificity. Here, we used commercially available 3D human corneal epithelial equivalents (HCEE) to study infection by these herpesviruses. HCEE was infected by HSV-1 and hCMV without requiring scarification and resulted in spreading infections. Spread of HSV-1 infection was rapid, while that of hCMV was slow. In contrast, infections with VZV required damage to the HCEE and did not spread. Acyclovir dramatically reduced replication of HSV-1 in this model. We conclude that highly quality-controlled, readily available HCEE is a useful model to study human-restricted herpesvirus infection of the human corneal epithelium and for screening of antiviral drugs for treating HSK in an 3D model system.


Assuntos
Antivirais , Epitélio Corneano , Herpesvirus Humano 1 , Ceratite Herpética , Humanos , Ceratite Herpética/virologia , Ceratite Herpética/tratamento farmacológico , Epitélio Corneano/virologia , Epitélio Corneano/patologia , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/uso terapêutico , Herpesvirus Humano 3/fisiologia , Herpesvirus Humano 3/efeitos dos fármacos , Citomegalovirus/fisiologia , Citomegalovirus/efeitos dos fármacos , Replicação Viral , Aciclovir/farmacologia , Aciclovir/uso terapêutico , Células Epiteliais/virologia , Modelos Biológicos
2.
Curr Top Microbiol Immunol ; 438: 103-134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34904194

RESUMO

Latency and reactivation in neurons are critical aspects of VZV pathogenesis that have historically been difficult to investigate. Viral genomes are retained in many human ganglia after the primary infection, varicella; and about one-third of the naturally infected VZV seropositive population reactivates latent virus, which most often clinically manifests as herpes zoster (HZ or Shingles). HZ is frequently complicated by acute and chronic debilitating pain for which there remains a need for more effective treatment options. Understanding of the latent state is likely to be essential in the design of strategies to reduce reactivation. Experimentally addressing VZV latency has been difficult because of the strict human species specificity of VZV and the fact that until recently, experimental reactivation had not been achieved. We do not yet know the neuron subtypes that harbor latent genomes, whether all can potentially reactivate, what the drivers of VZV reactivation are, and how immunity interplays with the latent state to control reactivation. However, recent advances have enabled a picture of VZV latency to start to emerge. The first is the ability to detect the latent viral genome and its expression in human ganglionic tissues with extraordinary sensitivity. The second, the subject of this chapter, is the development of in vitro human neuron systems permitting the modeling of latent states that can be experimentally reactivated. This review will summarize recent advances of in vitro models of neuronal VZV latency and reactivation, the limitations of the current systems, and discuss outstanding questions and future directions regarding these processes using these and yet to be developed models. Results obtained from the in vitro models to date will also be discussed in light of the recent data gleaned from studies of VZV latency and gene expression learned from human cadaver ganglia, especially the discovery of VZV latency transcripts that seem to parallel the long-studied latency-associated transcripts of other neurotropic alphaherpesviruses.


Assuntos
Varicela , Herpes Zoster , Humanos , Herpesvirus Humano 3/genética , Ativação Viral/genética , Latência Viral/genética , Herpes Zoster/patologia , Neurônios/patologia
3.
Viruses ; 14(5)2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35632756

RESUMO

Locked-nucleotide analog antagonists (LNAA) to four varicella zoster virus small non-coding RNA (VZVsncRNA 10-13) derived from the mRNA of the open reading frame (ORF) 61 gene individually reduce VZV replication in epithelial cells and fibroblasts. To study the potential roles VZVsncRNA 10-13 have in neuronal infection we generated two recombinant VZV; one in which 8 nucleotides were changed in VZVsncRNA10 without altering the encoded residues of ORF61 (VZVsnc10MUT) and a second containing a 12-nucleotide deletion of the sequence common to VZVsncRNA12 and 13, located in the ORF61 mRNA leader sequence (VZVsnc12-13DEL). Both were developed from a VZV BAC with a green fluorescent protein (GFP) reporter fused to the N terminal of the capsid protein encoded by ORF23. The growth of both mutant VZV in epithelial cells and fibroblasts was similar to that of the parental recombinant virus. Both mutants established productive infections and experimental latency in neurons derived from human embryonic stem cells (hESC). However, neurons that were latently infected with both VZV mutant viruses showed impaired ability to reactivate when given stimuli that successfully reactivated the parental virus. These results suggest that these VZVsncRNA may have a role in VZV latency maintenance and/or reactivation. The extension of these studies and confirmation of such roles could potentially inform the development of a non-reactivating, live VZV vaccine.


Assuntos
Herpesvirus Humano 3 , Pequeno RNA não Traduzido , Herpesvirus Humano 3/fisiologia , Humanos , Mutação , Nucleotídeos , Pequeno RNA não Traduzido/genética , Latência Viral/genética
4.
Viruses ; 14(2)2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35215971

RESUMO

Varicella Zoster Virus (VZV) causes Herpes Zoster (HZ), a common debilitating and complicated disease affecting up to a third of unvaccinated populations. Novel antiviral treatments for VZV reactivation and HZ are still in need. Here, we evaluated the potential of targeting the replicating and reactivating VZV genome using Clustered Regularly Interspaced Short Palindromic Repeat-Cas9 nucleases (CRISPR/Cas9) delivered by adeno-associated virus (AAV) vectors. After AAV serotype and guide RNA (gRNA) optimization, we report that a single treatment with AAV2-expressing Staphylococcus aureus CRISPR/Cas9 (saCas9) with gRNA to the duplicated and essential VZV genes ORF62/71 (AAV2-62gRsaCas9) greatly reduced VZV progeny yield and cell-to-cell spread in representative epithelial cells and in lytically infected human embryonic stem cell (hESC)-derived neurons. In contrast, AAV2-62gRsaCas9 did not reduce the replication of a recombinant virus mutated in the ORF62 targeted sequence, establishing that antiviral effects were a consequence of VZV-genome targeting. Delivery to latently infected and reactivation-induced neuron cultures also greatly reduced infectious-virus production. These results demonstrate the potential of AAV-delivered genome editors to limit VZV productive replication in epithelial cells, infected human neurons, and upon reactivation. The approach could be developed into a strategy for the treatment of VZV disease and virus spread in HZ.


Assuntos
Sistemas CRISPR-Cas , Dependovirus/genética , Herpesvirus Humano 3/fisiologia , Neurônios/virologia , Fases de Leitura Aberta/genética , Antivirais/farmacologia , Linhagem Celular , Descoberta de Drogas , Herpesvirus Humano 3/efeitos dos fármacos , Células-Tronco Embrionárias Humanas , Humanos , Proteínas Imediatamente Precoces , Transativadores , Proteínas do Envelope Viral , Latência Viral , Replicação Viral
5.
Antiviral Res ; 193: 105144, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34303746

RESUMO

Herpes zoster (HZ) remains a significant health burden with millions of cases in North America and Europe annually. HZ is frequently followed by long-term pain or post-herpetic neuralgia (PHN). Although effective vaccines for HZ are available, currently used nucleotide analogues often have limited effectiveness against HZ and especially PHN, so there remains a need for additional antiviral therapies for HZ. We recently identified a population of small non-coding RNA (sncRNA) encoded by Varicella Zoster Virus (VZV) and showed that single locked-nucleic acid antagonists (LNAA) to some sncRNA can modulate VZV replication in cell culture. In this work, we explored the antiviral effects of combinations of LNAA oligonucleotides targeting VZVsncRNA. Combinations of LNAA targeting three VZVsncRNA encoded in and near a critical viral regulatory gene were additive, achieving 96 % reduction in virus growth in a cell line. VZV growth was also inhibited by more than 90 % in primary human skin fibroblast cultures by individual and combinations of LNAA to VZVsncRNA. The inhibition by VZVsncRNA was specific and not a consequence of innate immune responses since LNAA to a different VZVsncRNA enhanced VZV growth. Targeted VZVsncRNA lack homologous sequences in the human transcriptome suggesting that LNAA to them would have reduced cytotoxicity if used as therapeutics. These results support further development of oligonucleotides targeting VZVsncRNA as a novel treatment for HZ.


Assuntos
Antivirais/farmacologia , Herpesvirus Humano 3/efeitos dos fármacos , Ácidos Nucleicos/farmacologia , Pequeno RNA não Traduzido/genética , Fibroblastos , Herpes Zoster/tratamento farmacológico , Herpesvirus Humano 3/fisiologia , Humanos , Oligonucleotídeos/síntese química , Pequeno RNA não Traduzido/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos
6.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32295909

RESUMO

Small noncoding RNAs (sncRNA), including microRNA (miR), are expressed by many viruses to provide an additional layer of gene expression regulation. Our work has shown that varicella-zoster virus (VZV; also called human herpesvirus 3 [HHV3]), the human alphaherpesvirus causing varicella and herpes zoster, expresses 24 virally encoded sncRNA (VZVsncRNA) in infected cells. Here, we demonstrate that several VZVsncRNA can modulate VZV growth, including four VZVsncRNA (VZVsncRNA10, -11, -12, and -13) that are antisense to VLT, a transcript made in lytic infections and associated with VZV latency. The influence on productive VZV growth and spread was assessed in epithelial cells transfected with locked nucleotide analog antagonists (LNAA). LNAA to the four VZVsncRNA antisense to VLT significantly reduced viral spread and progeny titers of infectious virus, suggesting that these sncRNA promoted lytic infection. The LNAA to VZVsncRNA12, encoded in the leader to ORF61, also significantly increased the levels of VLT transcripts. Conversely, overexpression of VZVsncRNA13 using adeno-associated virus consistently increased VZV spread and progeny titers. These results suggest that sncRNA antisense to VZV may regulate VZV growth, possibly by affecting VLT expression. Transfection of LNAA to VZVsncRNA14 and VZVsncRNA9 decreased and increased VZV growth, respectively, while LNAA to three other VZVsncRNA had no significant effects on replication. These data strongly support the conclusion that VZV replication is modulated by multiple virally encoded sncRNA, revealing an additional layer of complexity of VZV regulation of lytic infections. This may inform the development of novel anti-sncRNA-based therapies for treatment of VZV diseases.IMPORTANCE Varicella-zoster virus (VZV) causes herpes zoster, a major health issue in the aging and immunocompromised populations. Small noncoding RNAs (sncRNA) are recognized as important actors in modulating gene expression. This study extends our previous work and shows that four VZVsncRNA clustering in and near ORF61 and antisense to the latency-associated transcript of VZV can positively influence productive VZV infection. The ability of multiple exogenous small oligonucleotides targeting VZVsncRNA to inhibit VZV replication strengthens the possibility that they may inform development of novel treatments for painful herpes zoster.


Assuntos
Herpesvirus Humano 3/genética , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Varicela/genética , Varicela/virologia , Herpes Zoster/genética , Herpes Zoster/virologia , Herpesvirus Humano 3/crescimento & desenvolvimento , Humanos , MicroRNAs/metabolismo , Neurônios/virologia , Latência Viral , Replicação Viral
7.
Virus Res ; 274: 197773, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614167

RESUMO

Most herpesviruses use both host and viral small non-coding RNAs (sncRNA), especially microRNA, to modulate infection. Bioinformatic analyses of NGS data obtained from Varicella Zoster virus (VZV)-infected cells predicted 24 VZVsncRNA, seven of which were confirmed to be expressed in infected fibroblasts and neurons using stem-loop quantitative reverse transcription PCR (SL-PCR). We here assayed for the expression of all 24 of the bioinformatically predicted VZVsncRNA in cells productively infected by VZV using SL-PCR. 23 of the 24 predicted sequences were detected in VZV-infected ARPE19 cells and 19 of the 24 sequences in infected human neurons generated by two methods from embryonic stem cells. We also show that blocking one of two newly-tested VZV-encoded sncRNA using locked nucleotide antagonists significantly increased viral replication. These findings suggest that further study of VZV encoded sncRNA could elucidate an additional level of regulation of the life cycle of this pathogenic human herpesvirus.


Assuntos
Células Epiteliais/virologia , Herpesvirus Humano 3/genética , Neurônios/virologia , Pequeno RNA não Traduzido/genética , RNA Viral/genética , Células Cultivadas , Biologia Computacional , Perfilação da Expressão Gênica , Herpesvirus Humano 3/fisiologia , Humanos , Pequeno RNA não Traduzido/antagonistas & inibidores , RNA Viral/antagonistas & inibidores , Replicação Viral/genética
8.
Front Microbiol ; 10: 1634, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396173

RESUMO

The latent state of the human herpesvirus varicella zoster virus (VZV) has remained enigmatic and controversial. While it is well substantiated that VZV persistence is established in neurons after the primary infection (varicella or chickenpox), we know little of the types of neurons harboring latent virus genomes, if all can potentially reactivate, what exactly drives the reactivation process, and the role of immunity in the control of latency. Viral gene expression during latency has been particularly difficult to resolve, although very recent advances indicate that it is more restrictive than was once thought. We do not yet understand how genes expressed in latency function in the maintenance and reactivation processes. Model systems of latency are needed to pursue these questions. This has been especially challenging for VZV because the development of in vivo models of VZV infection has proven difficult. Given that up to one third of the population will clinically reactivate VZV to develop herpes zoster (shingles) and suffer from its common long term problematic sequelae, there is still a need for both in vivo and in vitro model systems. This review will summarize the evolution of models of VZV persistence and address insights that have arisen from the establishment of new in vitro human neuron culture systems that not only harbor a latent state, but permit experimental reactivation and renewed virus production. These models will be discussed in light of the recent data gleaned from the study of VZV latency in human cadaver ganglia.

9.
Exp Eye Res ; 180: 29-38, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30447199

RESUMO

Cell replacement therapy is a promising approach for treatment of retinal degenerative diseases. Several protocols for the generation of photoreceptor precursors (PRP) from human embryonic stem cells (hESC) have been reported with variable efficiency. Herein, we show the advantages of use of size-controlled embryoid bodies in the ESC differentiation process using two differentiation protocols. We further explored cell-labeling methods for following the survival of PRP transplanted subretinally in rat eyes. Size-controlled embryoid bodies (EBs) generated using microwell dishes and non-size-controlled EBs generated using V-shaped 96-well plates were differentiated into PRP using two differentiation protocols. The differentiation protocols utilized two different combinations of growth factors. The first, Dkk1, Noggin, and IGF1, and the second protocol used IWR1e, SAG, and CHIR99021. Differentiation efficiency to PRP was analyzed by qPCR, immunocytochemistry, and fluorescence-assisted cell sorting (FACS). Size-controlled IWR1e yielded a significantly higher percent (86.4%) of PRP cells expressing CRX, compared with non-size-controlled IWR1e (51.4%, P = 0.026) or the size-controlled DKK1 protocol (70.5%, p = 0.007). In addition, the IWR1e differentiated cells exhibited a significantly higher fluorescence intensity of CRX immunostaining, compared with the DKK1 protocol, consistent with higher protein expression levels. The IWR1e cells exhibited higher maturation levels, as manifested by lower early neuronal marker PAX6 and pluripotency marker OCT4 levels compared with the DKK1 protocol. The expression of other late photoreceptor markers (NRL, recoverin) were similar among the differentiation groups. PRP cells were labeled by using hESC constitutively expressing EGFP or by AAV-GFP transduction. Finally, we transplanted the cells in the subretinal space of wild-type rats and monitored their survival over several weeks. The AAV2 serotype efficiently transduced the PRP cells, whereas other serotypes yielded low or no transduction. Following subretinal transplantation of GFP-labeled PRP, 63% of the cells were detected at 4 weeks post-transplantation. In conclusion, we show here that the IWR1e protocol using size-controlled EBs efficiently generated of PRP that could be labeled and followed in-vivo for weeks. The data from this study is an advance toward the goal of PRP transplantation therapy for retinal degenerative diseases.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Células Fotorreceptoras/citologia , Coloração e Rotulagem/métodos , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Diferenciação Celular , Sobrevivência Celular , Dependovirus , Citometria de Fluxo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imuno-Histoquímica , Parvovirinae/genética , Ratos , Ratos Long-Evans , Reação em Cadeia da Polimerase em Tempo Real
10.
J Virol ; 91(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29021397

RESUMO

Many herpesviruses express small noncoding RNAs (sncRNAs), including microRNAs (miRNAs), that may play roles in regulating lytic and latent infections. None have yet been reported in varicella-zoster virus (VZV; also known as human herpesvirus 3 [HHV-3]). Here we analyzed next-generation sequencing (NGS) data for small RNAs in VZV-infected fibroblasts and human embryonic stem cell-derived (hESC) neurons. Two independent bioinformatics analyses identified more than 20 VZV-encoded 20- to 24-nucleotide RNAs, some of which are predicted to have stem-loop precursors potentially representing miRNAs. These sequences are perfectly conserved between viruses from three clades of VZV. One NGS-identified sequence common to both bioinformatics analyses mapped to the repeat regions of the VZV genome, upstream of the predicted promoter of the immediate early gene open reading frame 63 (ORF63). This miRNA candidate was detected in each of 3 independent biological repetitions of NGS of RNA from fibroblasts and neurons productively infected with VZV using TaqMan quantitative PCR (qPCR). Importantly, transfected synthetic RNA oligonucleotides antagonistic to the miRNA candidate significantly enhanced VZV plaque growth rates. The presence of 6 additional small noncoding RNAs was also verified by TaqMan qPCR in productively infected fibroblasts and ARPE19 cells. Our results show VZV, like other human herpesviruses, encodes several sncRNAs and miRNAs, and some may regulate infection of host cells.IMPORTANCE Varicella-zoster virus is an important human pathogen, with herpes zoster being a major health issue in the aging and immunocompromised populations. Small noncoding RNAs (sncRNAs) are recognized as important actors in modulating gene expression, and this study demonstrates the first reported VZV-encoded sncRNAs. Many are clustered to a small genomic region, as seen in other human herpesviruses. At least one VZV sncRNA was expressed in productive infection of neurons and fibroblasts that is likely to reduce viral replication. Since sncRNAs have been suggested to be potential targets for antiviral therapies, identification of these molecules in VZV may provide a new direction for development of treatments for painful herpes zoster.


Assuntos
Herpesvirus Humano 3/genética , MicroRNAs/genética , Pequeno RNA não Traduzido/genética , Biologia Computacional , Fibroblastos/virologia , Genoma Viral , Herpes Zoster/virologia , Herpesvirus Humano 3/fisiologia , Humanos , MicroRNAs/biossíntese , Neurônios/virologia , Fases de Leitura Aberta , Pequeno RNA não Traduzido/biossíntese , Pequeno RNA não Traduzido/classificação , Análise de Sequência de DNA , Latência Viral , Replicação Viral
11.
Dev Neurobiol ; 76(6): 688-701, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26446277

RESUMO

PPARγ is a ligand-activated nuclear receptor best known for its involvement in adipogenesis and glucose homeostasis. PPARγ activity has also been associated with neuroprotection in different neurological disorders, but the mechanisms involved in PPARγ effects in the nervous system are still unknown. Here we describe a new functional role for PPARγ in neuronal responses to injury. We found both PPAR transcripts and protein within sensory axons and observed an increase in PPARγ protein levels after sciatic nerve crush. This was correlated with increased retrograde transport of PPARγ after injury, increased association of PPARγ with the molecular motor dynein, and increased nuclear accumulation of PPARγ in cell bodies of sensory neurons. Furthermore, PPARγ antagonists attenuated the response of sensory neurons to sciatic nerve injury, and inhibited axonal growth of both sensory and cortical neurons in culture. Thus, axonal PPARγ is involved in neuronal injury responses required for axonal regeneration. Since PPARγ is a major molecular target of the thiazolidinedione (TZD) class of drugs used in the treatment of type II diabetes, several pharmaceutical agents with acceptable safety profiles in humans are available. Our findings provide motivation and rationale for the evaluation of such agents for efficacy in central and peripheral nerve injuries.


Assuntos
Axônios/metabolismo , Regulação da Expressão Gênica/fisiologia , Regeneração Nervosa/fisiologia , Neurônios/patologia , PPAR gama/metabolismo , Neuropatia Ciática/patologia , Anilidas/farmacologia , Animais , Axônios/efeitos dos fármacos , Axotomia , Células Cultivadas , Embrião de Mamíferos , Gânglios Espinais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neurofilamentos/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley
12.
PLoS Pathog ; 11(6): e1004885, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26042814

RESUMO

Varicella zoster virus (VZV) latency in sensory and autonomic neurons has remained enigmatic and difficult to study, and experimental reactivation has not yet been achieved. We have previously shown that human embryonic stem cell (hESC)-derived neurons are permissive to a productive and spreading VZV infection. We now demonstrate that hESC-derived neurons can also host a persistent non-productive infection lasting for weeks which can subsequently be reactivated by multiple experimental stimuli. Quiescent infections were established by exposing neurons to low titer cell-free VZV either by using acyclovir or by infection of axons in compartmented microfluidic chambers without acyclovir. VZV DNA and low levels of viral transcription were detectable by qPCR for up to seven weeks. Quiescently-infected human neuronal cultures were induced to undergo renewed viral gene and protein expression by growth factor removal or by inhibition of PI3-Kinase activity. Strikingly, incubation of cultures induced to reactivate at a lower temperature (34°C) resulted in enhanced VZV reactivation, resulting in spreading, productive infections. Comparison of VZV genome transcription in quiescently-infected to productively-infected neurons using RNASeq revealed preferential transcription from specific genome regions, especially the duplicated regions. These experiments establish a powerful new system for modeling the VZV latent state, and reveal a potential role for temperature in VZV reactivation and disease.


Assuntos
Herpesvirus Humano 3/fisiologia , Células-Tronco Neurais/virologia , Neurônios/virologia , Ativação Viral/fisiologia , Latência Viral/fisiologia , Células-Tronco Embrionárias/virologia , Herpes Zoster/virologia , Humanos , Hibridização In Situ , Técnicas In Vitro , Reação em Cadeia da Polimerase
13.
PLoS One ; 10(5): e0126081, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25973990

RESUMO

Varicella Zoster Virus (VZV), the alphaherpesvirus that causes varicella upon primary infection and Herpes zoster (shingles) following reactivation in latently infected neurons, is known to be fusogenic. It forms polynuclear syncytia in culture, in varicella skin lesions and in infected fetal human ganglia xenografted to mice. After axonal infection using VZV expressing green fluorescent protein (GFP) in compartmentalized microfluidic cultures there is diffuse filling of axons with GFP as well as punctate fluorescence corresponding to capsids. Use of viruses with fluorescent fusions to VZV proteins reveals that both proteins encoded by VZV genes and those of the infecting cell are transferred in bulk from infecting non-neuronal cells to axons. Similar transfer of protein to axons was observed following cell associated HSV1 infection. Fluorescence recovery after photobleaching (FRAP) experiments provide evidence that this transfer is by diffusion of proteins from the infecting cells into axons. Time-lapse movies and immunocytochemical experiments in co-cultures demonstrate that non-neuronal cells fuse with neuronal somata and proteins from both cell types are present in the syncytia formed. The fusogenic nature of VZV therefore may enable not only conventional entry of virions and capsids into axonal endings in the skin by classical entry mechanisms, but also by cytoplasmic fusion that permits viral protein transfer to neurons in bulk.


Assuntos
Axônios/virologia , Herpes Zoster/metabolismo , Herpesvirus Humano 3/fisiologia , Proteínas/metabolismo , Proteínas Virais/metabolismo , Animais , Axônios/metabolismo , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Transporte Proteico , Proteínas/análise , Proteínas Virais/análise
14.
J Virol Methods ; 206: 128-32, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24925132

RESUMO

The research laboratory generation of free Varicella-Zoster Virus (VZV) from cultured yields results relatively low titers, with the result that most study of VZV infection utilizes cell-associated infection. However, important aspects of VZV-cell interaction, such as the entry mechanism and superinfection exclusion have not yet been studied in detail, in part due to the difficulty in obtaining a high titer cell free virus. Here, a method to generate relatively high-titer cell-free VZV, based on a combination of previously published techniques and subsequent concentration is described. VZV-infected cells are disrupted, sonicated and clarified by centrifugation. The cell-free virus in the supernatant is then concentrated to yield up to 10(5)PFU/ml. The cell debris pellet, which contains up to 10(6)PFU/ml can also be used for non cell-associated infection. Magnetic nanoparticles available commercially can be used to further enhance infection by cell-free-VZV. The tools described here hold promise for better understanding of important aspects of VZV-cell interactions such as entry and latency.


Assuntos
Herpesvirus Humano 3/isolamento & purificação , Vírion/isolamento & purificação , Virologia/métodos , Herpesvirus Humano 3/genética , Vírion/genética
15.
J Virol ; 88(13): 7674-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24741086

RESUMO

Transcriptional changes following varicella-zoster virus (VZV) infection of cultured human neurons derived from embryonic stem cells were compared to those in VZV-infected human foreskin fibroblasts. Transcription of 340 neuronal genes significantly altered by VZV infection included 223 transcript changes unique to neurons. Strikingly, genes inhibiting apoptosis were upregulated in neurons, while proapoptotic gene transcription was increased in fibroblasts. These data are a basis for discovery of differences in virus-host interactions between these VZV targets.


Assuntos
Apoptose/genética , Biomarcadores/metabolismo , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Herpesvirus Humano 3/fisiologia , Neurônios/metabolismo , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/virologia , Fibroblastos/citologia , Fibroblastos/virologia , Humanos , Neurônios/citologia , Neurônios/virologia , Análise de Sequência com Séries de Oligonucleotídeos
16.
J Virol ; 88(9): 5079-86, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24574392

RESUMO

UNLABELLED: The two human neurotropic alphaherpesviruses varicella-zoster virus (VZV) and herpes simplex virus type 1 (HSV1) both establish latency in sensory ganglia. Human trigeminal ganglia are known to frequently harbor both viruses, and there is evidence to suggest the presence of both VZV and HSV1 DNA in the same neuron. We ask here whether VZV and HSV1 can exclude themselves and each other and whether they can productively infect the same cells in human neurons and human foreskin fibroblasts (HFF). Simultaneous infection (coinfection) or consecutive infection (superinfection) was assessed using cell-free HSV1 and VZV expressing fluorescent reporter proteins. Automated analysis was carried out to detect singly and dually infected cells. We demonstrate that VZV and HSV1 both display efficient superinfection exclusion (SE) in HFF, with each virus excluding either itself or the other virus. While SE also occurred in neurons, it was with much lower efficiency. Both alphaherpesviruses productively infected the same neurons, whether applied simultaneously or even consecutively, albeit at lower frequencies. IMPORTANCE: Superinfection exclusion by VZV for itself or the related neurotropic alphaherpesvirus HSV1 has been studied here for the first time. We find that while these viruses display classic SE in fibroblasts, SE is less efficient for both HSV1 and VZV in human neurons. The ability of multiple VZV strains to productively infect the same neurons has important implications in terms of recombination of both wild-type and vaccine strains in patients.


Assuntos
Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 3/fisiologia , Neurônios/virologia , Interferência Viral , Células Cultivadas , Fibroblastos/virologia , Herpesvirus Humano 1/crescimento & desenvolvimento , Herpesvirus Humano 3/crescimento & desenvolvimento , Humanos
17.
EMBO Mol Med ; 5(10): 1556-68, 2013 10.
Artigo em Inglês | MEDLINE | ID: mdl-23996934

RESUMO

Identification of tissue-specific renal stem/progenitor cells with nephrogenic potential is a critical step in developing cell-based therapies for renal disease. In the human kidney, stem/progenitor cells are induced into the nephrogenic pathway to form nephrons until the 34 week of gestation, and no equivalent cell types can be traced in the adult kidney. Human nephron progenitor cells (hNPCs) have yet to be isolated. Here we show that growth of human foetal kidneys in serum-free defined conditions and prospective isolation of NCAM1(+) cells selects for nephron lineage that includes the SIX2-positive cap mesenchyme cells identifying a mitotically active population with in vitro clonogenic and stem/progenitor properties. After transplantation in the chick embryo, these cells-but not differentiated counterparts-efficiently formed various nephron tubule types. hNPCs engrafted and integrated in diseased murine kidneys and treatment of renal failure in the 5/6 nephrectomy kidney injury model had beneficial effects on renal function halting disease progression. These findings constitute the first definition of an intrinsic nephron precursor population, with major potential for cell-based therapeutic strategies and modelling of kidney disease.


Assuntos
Néfrons/citologia , Insuficiência Renal Crônica/cirurgia , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Antígeno CD56/metabolismo , Células Cultivadas , Embrião de Galinha , Galinhas , Membrana Corioalantoide/metabolismo , Membrana Corioalantoide/patologia , Embrião de Mamíferos/citologia , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Túbulos Renais/patologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco/metabolismo
18.
Am J Pathol ; 183(5): 1621-1633, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24055371

RESUMO

The nephron is composed of a monolayer of epithelial cells that make up its various compartments. In development, these cells begin as mesenchyme. NCAM1, abundant in the mesenchyme and early nephron lineage, ceases to express in mature kidney epithelia. We show that, once placed in culture and released from quiescence, adult human kidney epithelial cells (hKEpCs), uniformly positive for CD24/CD133, re-express NCAM1 in a specific cell subset that attains a stem/progenitor state. Immunosorted NCAM1(+) cells overexpressed early nephron progenitor markers (PAX2, SALL1, SIX2, WT1) and acquired a mesenchymal fate, indicated by high vimentim and reduced E-cadherin levels. Gene expression and microarray analysis disclosed both a proximal tubular origin of these cells and molecules regulating epithelial-mesenchymal transition. NCAM1(+) cells generated clonal progeny when cultured in the presence of fetal kidney conditioned medium, differentiated along mesenchymal lineages but retained the unique propensity to generate epithelial kidney spheres and produce epithelial renal tissue on single-cell grafting in chick CAM and mouse. Depletion of NCAM1(+) cells from hKEpCs abrogated stemness traits in vitro. Eliminating these cells during the regenerative response that follows glycerol-induced acute tubular necrosis worsened peak renal injury in vivo. Thus, higher clone-forming and developmental capacities characterize a distinct subset of adult kidney-derived cells. The ability to influence an endogenous regenerative response via NCAM1 targeting may lead to novel therapeutics for renal diseases.


Assuntos
Antígeno CD56/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Rim/patologia , Células-Tronco/metabolismo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Adulto , Animais , Anticorpos/metabolismo , Biomarcadores/metabolismo , Nitrogênio da Ureia Sanguínea , Diferenciação Celular/genética , Proliferação de Células , Galinhas , Células Clonais , Regulação para Baixo/genética , Ontologia Genética , Células HEK293 , Humanos , Mesoderma/patologia , Camundongos , Anotação de Sequência Molecular , Néfrons/metabolismo , Néfrons/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Transcriptoma/genética , Regulação para Cima/genética
19.
Virology ; 443(2): 285-93, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23769240

RESUMO

Varicella Zoster virus (VZV) productively infects humans causing varicella upon primary infection and herpes zoster upon reactivation from latency in neurons. In vitro studies using cell-associated VZV infection have demonstrated productive VZV-infection, while a few recent studies of human neurons derived from stem cells incubated with cell-free, vaccine-derived VZV did not result in generation of infectious virus. In the present study, 90%-pure human embryonic stem cell-derived neurons were incubated with recombinant cell-free pOka-derived virus made with an improved method or VZV vaccine. We found that cell-free pOka and vOka at higher multiplicities of infection elicited productive infection in neurons followed by spread of infection, cytopathic effect and release of infectious virus into the medium. These results further validate the use of this unlimited source of human neurons for studying unexplored aspects of VZV interaction with neurons such as entry, latency and reactivation.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Herpes Zoster/virologia , Herpesvirus Humano 3/patogenicidade , Neurônios/virologia , Animais , Linhagem Celular , Células Cultivadas , Vacina contra Varicela , Chlorocebus aethiops , Células-Tronco Embrionárias/virologia , Herpesvirus Humano 3/fisiologia , Humanos , Neurônios/citologia , Células Vero , Latência Viral , Replicação Viral
20.
J Neurosci Methods ; 214(1): 9-14, 2013 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-23313848

RESUMO

Human embryonic stem cells (hESC) are potentially an unlimited source of neurons for study and therapy for human disease. Directed differentiation of hESC has been performed using many different methods, often via neural precursor intermediates generated from aggregates of hESC. We describe here a protocol based on commercially available reusable silicone micromolds and two small molecule growth factor inhibitors to simply and reproducibly generate human neurons from hESC. Hundreds of neurospheres were generated with a single pipettation of hESC into agarose multiwell plates made with the micromolds. This was followed by suspension culture with two medium changes, and plating of clumps cut from the neurospheres on laminin-coated coverslips. After two weeks of terminal differentiation, 90%+ of cells expressed neuronal proteins, and many of the neurons expressed markers of peripheral sensory neurons. The neurons made with this method underwent productive infection with the human-specific pathogenic virus varicella zoster, demonstrating the utility of the neurons for addressing clinically relevant research questions. This simple method should allow laboratories experienced in growing human pluripotent cells to easily generate neurons for studies of nerve cell biology and pathology.


Assuntos
Técnicas de Cultura de Células/instrumentação , Células-Tronco Embrionárias/citologia , Neurogênese , Neurônios/citologia , Sefarose , Benzamidas/farmacologia , Biomarcadores , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , Dioxóis/farmacologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/virologia , Genes Reporter , Herpesvirus Humano 3/fisiologia , Humanos , Laminina , Microscopia de Fluorescência , Fatores de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/biossíntese , Neurogênese/efeitos dos fármacos , Neurônios/virologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Esferoides Celulares/efeitos dos fármacos , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA